Неисправность датчика кислорода. Признаки и причины
Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.
Содержание:
Назначение датчика кислорода
Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».
Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.
В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.
На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.
Влияет ли лямбда зонд на запуск — что будет?
Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.
Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.
Признаки неисправности датчика кислорода
Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:
- Ухудшение тяги и снижение динамических характеристик автомобиля.
- Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет.
- Увеличение расхода топлива. Обычно перерасход незначительный, однако можно определить при программном замере.
- Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.
Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).
Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).
Причины неисправности датчика кислорода
В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.
- Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
- Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
- Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
- Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
- Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
- Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
- Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
- Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
- Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.
Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.
Как определить неисправность датчика кислорода
Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.
Специалисты компании BOSCH советуют проверять соответствующий датчик каждые 30 тысяч километров пробега, либо при выявлении описанных выше неисправностей.
Что нужно сделать в первую очередь при диагностике?
- Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
- Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
- Можно попытаться очистить сажу, однако это не всегда возможно.
- Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
- Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).
Как проверить лямбда-зонд видео
Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.
Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:
- Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
- Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
- При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.
Точная проверка лямбда зонда
Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.
График правильной работы датчика кислорода
На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.
График работы сильно загрязненного датчика кислорода
График работы датчика кислорода на обедненной топливной смеси
График работы датчика кислорода на обогащенной топливной смеси
График работы датчика кислорода на бедной топливной смеси
Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.
Как устранить неисправность датчика кислорода
Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.
Метод первый
Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.
Когда защитный колпачок был демонтирован полностью, то для его восстановления на его посадочном месте придется воспользоваться аргоновой сваркой.
Процедура по восстановлению выполняется по следующему алгоритму:
- Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
- Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
- Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.
Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.
Метод второй
Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:
- Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
- Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
- Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.
Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.
Спрашивайте в комментариях. Ответим обязательно!
Датчик кислорода (Лямбда-зонд): как работает, проблемы, симптомы
На чтение 5 мин. Просмотров 2.4k. Опубликовано
Датчик кислорода (ДК) — он же лямбда-зонд — измеряет количество кислорода в выхлопных газах, отправляя сигнал на блок управления двигателя (ЭБУ).
Где находится датчик кислорода
Передний датчик кислорода ДК1 установлен в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор является основной частью системы контроля выбросов в автомобиле.
Задний кислородный датчик ДК2 установлен в выхлопе после каталитического нейтрализатора.
На 4-цилиндровых двигателях устанавливают как минимум два лямбда-зонда. Двигатели V6 и V8 имеют как минимум четыре датчика O2.
ЭБУ использует сигнал от переднего кислородного датчика для регулировки топливно-воздушной смеси путем добавления или уменьшения топлива.
Сигнал заднего датчика кислорода используется для контроля работы каталитического нейтрализатора. В современных автомобилях вместо переднего кислородного датчика используется датчик воздушно-топливного отношения. Он работает аналогично, но точнее.
Как работает датчик кислорода
Существует несколько типов лямбда-зондов, но для простоты в этой статье мы рассмотрим только обычные генерирующие напряжение датчики кислорода.
Как следует из названия, генерирующий напряжение датчик кислорода генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопного газа.
Для правильной работы лямбда-зонд необходимо нагреть до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от ЭБУ двигателя.
Когда топливовоздушная смесь (ТВС), поступающая в двигатель, бедная (мало топлива и много воздуха), в выхлопе остается больше кислорода, и кислородный датчик создает очень небольшое напряжение (0,1 – 0,2 В).
Если ТВС обогащается (много топлива и мало воздуха), в выхлопе остается меньше кислорода, поэтому датчик будет генерировать бОльшее напряжение (около 0,9 В).
Регулировка соотношения топливовоздушной смеси
Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.
Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.
Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.
Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.
Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).
Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.
В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.
Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.
Задний датчик кислорода
Задний или нижний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из катализатора. Сигнал от заднего лямбда-зонда используется для контроля эффективности нейтрализатора.
Контроллер постоянно сравнивает сигналы от передних и задних датчиков O2. Основываясь на двух сигналах, ЭБУ знает, насколько хорошо каталитический нейтрализатор работает. Если катализатор выходит из строя, ЭБУ включает индикатор «Check Engine», чтобы вы знали об этом. Задний датчик кислорода можно проверить с помощью диагностического сканера, адаптера ELM327 с программой Torque или осциллографа.
Идентификация датчика кислорода
Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.
Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.
Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.
Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?
Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».
Замена датчика кислорода
Проблемы с датчиком кислорода являются распространёнными. Неисправный лямбда-зонд может привести к увеличению расхода топлива, увеличению выбросов в атмосферу и различным проблемам во время вождения (провалы оборотов, плохое ускорение, плавающие обороты и т. д.). Если датчик кислорода неисправен, его необходимо заменить.
В большинстве автомобилей замена ДК является довольно простой процедурой. Если вы хотите заменить кислородный датчик самостоятельно, с некоторыми навыками и руководством по ремонту, это не так сложно, но вам может понадобиться специальная торцевая головка для датчика (на фото).
Иногда может быть трудно вытащить старый лямбда-зонд, так как они часто сильно ржавеют.
Еще одна вещь, о которой следует знать — некоторые автомобили, как известно, имеют проблемы с заменяемыми датчиками кислорода.
Например, есть сведения о неоригинальном датчике кислорода, вызывающем проблемы в некоторых двигателях Chrysler. Если вы не уверены, лучше всегда использовать оригинальный датчик.
Принцип работы лямбда зонда
Лямбда зонд. Его назначение в системе питания автомобиля
Инжекторная система питания автомобиля является более экономичной и эффективной, чем карбюраторная. Достигается это за счет полного контроля за подачей топлива и воздуха, которое осуществляется рядом датчиков. Они выполняют проверку рабочих параметров, передают их на электронный блок, который анализирует и на их основе корректирует работу всей системы.
Причем датчики для обеспечения полной информации о работе системы устанавливаются не только на впуске (количества топлива, воздуха), но и в выпускной системе. В ней используется всего один датчик, но от его работы зависит, какое количество воздуха будет подаваться в цилиндры.
Само название «лямбда» происходит от греческого символа λ. В автомобилестроении данным символом обозначается коэффициент остатка воздуха в горючей смеси.
Зачем нужен лямбда зонд в машине?
Основная задача этого датчика кислорода – оценка количества несгоревшего кислорода в отработанных газах.
Дело в том, что самое эффективное сгорание топливовоздушной смеси достигается при определенном соотношении топлива и воздуха — одна часть бензина должно смешиваться с 14,7 частями воздуха.
Если топливовоздушная смесь будет обедненной, то содержание воздуха будет увеличенным, и наоборот – обогащенная смесь обеспечит меньшее процентное содержание кислорода в выхлопных газах. А это уже сказывается на мощности, расходе, приемистости.
А поскольку двигатель работает на разных режимах, поэтому такое соотношение далеко не всегда соблюдается. Чтобы была возможность контролировать количество подаваемого воздуха, в систему питания и включен лямбда-зонд.
На основе показаний этого датчика электронный блок оценивает качество топливовоздушной смеси и при обнаружении несоответствия нормам – корректирует работу системы, обеспечивая подачу оптимальной смеси путем подачи сигнала на форсунки, которые увеличивают или уменьшают количество впрыскиваемого топлива.
Устройство и принцип работы лямбда зонда
Принцип вроде и прост, но реализация его — не такая уж и легкая.
Этот датчик должен с чем-то сравнивать полученные результаты, чтобы «понять», что произошло изменение процента кислорода.
Поэтому он делает замеры в двух местах – атмосферный воздух и тот, что остался после сгорания смеси.
Это позволяет ему «почувствовать» разницу при изменении соотношения топливовоздушной смеси.
При этом на электронный блок должен подаваться электрический сигнал.
Для этого лямбда-зонду необходимо преобразовать результаты замеров в импульс, который будет подаваться на ЭБУ.
Для проведения замеров концентрации кислорода в атмосфере и в выхлопных газах, используется два электрода, вступающих в реакцию с ним.
То есть в работе этого датчика задействован принцип гальванического элемента, при котором смена параметров химической реакции влечет за собой изменение напряжения между электродами датчика. Так, при обогащенной смеси, когда процент кислорода – меньше, напряжение возрастает, а при обеднении – снижается.
Полученный в результате химической реакции электрический импульс подается на ЭБУ, параметры которого он сравнивает с прописанными в своей памяти и в результате этого производит корректировку работы системы питания.
Используя для работы химические реакции, лямбда-зонд не является сложным по конструкции.
Основным его элементом выступает керамический наконечник, изготовленный из диоксида циркония (реже – диоксида титана) с платиновым покрытием, которое и выступает в роли электродов, вступающих в реакцию.
Одной своей стороной наконечник контактирует с атмосферой, а другой – с выхлопными газами.
Лямбда зонд с подогревом
Особенность работы такого керамического наконечника заключается в том, что произведение эффективных замеров остаточного процента кислорода выполняется только при определенном температурном режиме. Чтобы наконечник обрел необходимую проводимость, необходима температура в 300-400 °С
Чтобы обеспечить необходимый температурный режим изначально этот датчик устанавливали ближе к выпускному коллектору, что обеспечивало достижение необходимой температуры по мере прогрева силовой установки.
Видео: Как подключить лямбда зонд с подогревом
Использование двух и более датчиков
Сейчас многие автомобили, чтобы повысить их экологичность, используют каталитические нейтрализаторы, что позволяет снизить вредные выбросы в атмосферу. При этом выхлопная система оснащается не одним, а двумя и более кислородными датчиками.
В такой выхлопной системе эти датчики производят не только замер остаточного кислорода, но еще и оценивают эффективность работы нейтрализатора. Один из датчиков устанавливается перед катализатором, а второй – за ним. Это позволяет на основании сравнения показаний двух лямбда-зондов понять, выполняется ли нейтрализация вредных веществ.
С одной стороны, такая система позволяет меньше загрязнять окружающую среду, но с другой – она очень «капризна». Одна-две заправки некачественным бензином запросто может испортить нейтрализатор. А это уже скажется на показаниях кислородных датчиков, и как следствие – на работе всей системы питания.
К тому же даже при соблюдении всех условий эксплуатации авто, нейтрализатор выйдет из строя, поскольку у него имеется свой ресурс, после которого он подлежит замене, чтобы восстановить нормальную работоспособность системы питания. А поскольку замена – «удовольствие» дорогостоящее, то на выручку приходят разные хитрости.
Многие просто вырезают нейтрализатор, а на его место устанавливают пламегаситель – обычный отрезок трубы необходимого диаметра. А чтобы получить разницу в показаниях двух датчиков, используют так называемую обманку на лямбда зонд – специальную проставку, устанавливаемую на второй лямбда-зонд.
Эта обманка просто удаляет наконечник от потока выхлопных газов, что влияет на его показания. За счет этого и достигается разница, которую ЭБУ воспринимает как работу катализатора.
Конструкция и принцип работы кислородного датчика
Конструкция датчика кислорода на основе диоксида циркония (ZrO2)
- Наружный электрод — осуществляет контакт с выхлопными газами.
- Внутренний электрод — контактирует с атмосферой.
- Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
- Твердый электролит — расположен между двумя электродами (диоксид циркония).
- Корпус.
- Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов.
Устройство наконечника лямбда-зонда
Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.
Где находится?
Устанавливается широкополосный лямбда-зонд в выхлопной системе.
В зависимости от типа автомобиля, в конструкции может использоваться один или несколько таких датчиков.
Так, первый устанавливается до катализатора, второй – после него.
Внешне его можно увидеть не всегда. Но в любом случае данный элемент будет выглядеть как некая форсунка, что торчит из трубы со жгутом проводов.
Устройство
Конструкция данного механизма предполагает наличие следующих элементов:
- Металлический корпус с резьбой.
- Электрический нагреватель.
- Наконечник.
- Защитный экран.
- Токопроводящий контакт.
- Уплотнительная манжета для провода.
- Изолятор.
В основе механизма лежат два чувствительных электрода. Внешний имеет платиновое напыление, благодаря которому электрод сильно чувствителен к кислороду. Внутренний же изготовлен из циркония. Устанавливается датчик таким образом, чтобы сквозь него проходили отработанные газы. Внешний электрод улавливает О2, после чего измеряется потенциал между двумя наконечниками. Чем он выше, тем больше кислорода в системе.
Широкополосный датчик кислорода являет собой усовершенствованную конструкцию двухконтактного механизма. Отметим, что потенциал разницы измеряется под воздействием определенной силы тока.
Принцип работы и устройство циркониевого лямбда-зонда
Циркониевая лямбда выполнена аналогично титановой. Из внешних признаков разница возможна в количестве проводов (у титановой один провод точно всегда идет на подогрев, у циркониевой подогрев необязателен) и в отверстии в защитном экране для атмосферного воздуха.
Внутри находится чувствительный элемент с платиновыми электродами, один электрод расположен в среде выхопных газов, второй в атмосферном воздухе. Пространство между защитным наконечником и электродом наполнено пористой керамикой на основе циркония. Она является твердым электролитом, проводящим ионы кислорода.
После прогрева циркониевой лямбды до рабочей температуры (300-400 градусов) между электродами возникает напряжение, величина которого определяется разностью содержания кислорода в атмосферном воздухе и в отработавших выхлопных газах. Т.е. чем больше концентрация кислорода в выхлопных газах, тем меньше
Неисправность лямбда-зонда: признаки, симптомы и проверка
Что делать, когда в машине вдруг падает «тяга» или она в слишком большом темпе начинает расходовать бензин? Опытный мастер скажет вам, что дело в лямбда-зонде и он подлежит ремонту или замене. Особенно такой проблеме подвержены владельцы иномарок. И правда — что же в такой ситуации делать? Ведь вы и сами понимаете, что нынче автозапчасти стоят недешево. Можно ли предотвратить поломку лямбда-зонда, какие есть признаки неисправности лямбда-зонда, и что такое он из себя представляет? Давайте разберем всё по порядку.
За что отвечает лямбда зонд
Как выглядит лямбда-зонд
Попросту говоря, лямбда-зонд, он же О2 датчик — это датчик, оценивающий количество не сгоревшего топлива и кислорода в выхлопной системе автомобиля. Хотя лямбда-зонды используют также в других областях, мы в этой статье будем говорить сугубо об автомобильных датчиках кислорода.
Для чего же нужен этот датчик кислорода? Так называемые катализаторы, которые уменьшают долю вредных веществ в выхлопах, имеются в данный момент в каждой более-менее современной машине. Лямбда-зонд контролирует количество кислорода в катализаторах, таким образом, продлевая срок их действия. Также он существенно влияет на количество потребляемого вашим автомобилем топлива и улучшает работу двигателя.
Если упомянуть конкретные факты, то известно, что топливо эффективно сгорает только при правильном соотношении топлива и воздуха в топливной смеси. В противном случае (если воздуха будет меньше или же больше) будут изнашиваться и приходить в негодность катализаторы. Поэтому, лямбда-зонд непосредственно влияет на выхлопную систему автомобиля.
Неисправный лямбда-зонд: причины и признаки
Основные причины, которые приводят лямбда-зонд в неисправное состояние следующие:
- Перегрев;
- Механическое повреждение;
- Проблемы с подключением;
- Износ.
Как видно — все эти причины действуют на датчик кислорода не сразу, из-за чего неопытные водители могут не понять причину нестабильного поведения автомобиля и вовремя не примут соответствующих мер. Поэтому, во избежания распространённых ошибок мы расскажем вам о нескольких этапах выхода из строя датчика кислорода.
- Первый этап. На начальной стадии лямбда-зонд начинает «барахлить» — время от времени перестаёт поступать сигнал, данные идут в очень широком диапазоне, из-за чего значительно ухудшается качество топливной смеси и ухудшаются обороты холостого хода. На этом этапе неисправности лямбда-зонда автомобиль резко дергается, двигатель издает странные хлопки и на панели загорается предупреждающая лампочка.
- Второй этап. На втором этапе, при непрогретом двигателе датчик и вовсе перестаёт работать. При этом будут видны те же самые, но ещё сильнее выраженные признаки неисправности. К ним добавится также значительное падение мощности двигателя и замедленное действие педали акселератора. В одном из худших вариантов двигатель будет очень сильно перегреваться, что приведет к более значительным неисправностям и соответственно затратам.
- Третий этап. Третьим этапом обычно становится поломка лямбда-зонда. В этом случае вас ждет ещё большее снижение мощности автомобиля (особенно это будет заметно при движении на большой скорости), а также резкий и неприятный токсичный запах из выхлопной трубы.
Как проверить лямбда-зонд
Если вы заметили описанные выше признаки неисправности лямбда-зонда, то вам нужно его немедленно проверить. Выполнять проверку лямбда-зонда лучше всего на профессиональном оборудовании. Зачастую проверка проводится при помощи электронного осциллографа. Сам процесс происходит при работающем двигателе, так как в противном же случае, данные не могут быть получены. Такую сравнительно недорогую услугу вам смогут предоставить очень многие СТО.
Хотя проверить датчик можно и вольтметром в домашних условиях, но в случае, если датчик будет не прогрет, то вы можете получить неправильные данные.
Видео о неисправностях и проверке лямбда-зонде
Читайте также: Что такое
Принцип работы лямбда зонда | Выхлоп-сервис
В современных системах управления впрыском топлива, едва ли не главную роль выполняет датчик содержания кислорода в выхлопных газах (Oxygen Sensor). Его часто называют лямбда-зонд или О2-датчик, иногда — датчик выхлопа. Задача лямбда-зонда состоит в том чтобы преобразовывать информацию о содержании кислорода в выхлопных газах в эл.сигнал, который, в свою очередь, считывается эл.блоком управления впрыском (ECU).
В современных двигателях оптимальной считается смесь с соотношением 14.7 частей воздуха к 1части топлива. Соотношение воздуха и топлива в составе топливной смеси определяется эл.блоком по полученным сигналам датчиков установленных на двигателе, качество же приготовленной смеси проверяется ECU по сигналам, введенного в обратную связь, датчика О2. При излишне обогащенной или обедненной топливной смеси, эл.блок корректирует ее приготовление с учетом показаний лямбда-зонда. датчик О2 выполняет в системе впрыска топлива одну из основных функций, работа двигателя во многом зависит от его исправного состояния. Самыми важными условиями работоспособности датчика содержания кислорода в выхлопных газах являются:
1. Обеспечение герметичности выхлопного тракта и непосредственно места установки датчика. При замене вышедшего из строя датчика О2 следует смазывать его резьбу специальной токопроводной смазкой для предотвращения заклинивания резьбового соединения. Не стоит применять для этого стандартные смазки, т.к. они не являются токопроводными, а резьбовая часть датчика является для него эл.контактом. Некачественный контакт (или контакт с большим сопротивлением эл.току) приведет к неправильной работе
лямбда-зонда. В некоторых конструкциях предусмотрена установка герметизирующей шайбы. Чаще всего эти шайбы являются одноразовыми и при демонтаже датчика подлежат замене.
2. Считается недопустимым попадание на корпус датчика тормозной или охлаждающей жидкости и других реактивов. Не следует применять для очистки его поверхности какие-либо растворители и активные моющие средства.
3. В связи с малыми рабочими токами, должны быть обеспечены надлежащие контакты в разъемах соединений эл.цепи и проводки датчика О2.
4. Существенно снизить ресурс лямбда-зонда может применение топлива, в состав которого входит высокое содержание свинца (эт.бензин).
5. К выходу из строя датчика может привести перегрев его корпуса. Перегрев может произойти из-за неправильно установленного угла опережения зажигания или сильно переобогащенной топливной смеси. В свою очередь, топливная смесь может быть переобогащена из-за забитого воздушного фильтра, неисправного регулятора давления топлива в системе, неработающего датчика температуры охлаждающей жидкости и др.
Функционально лямбда-зонд работает, как переключатель и выдает напряжение выше порогового (0.45V) при низком содержании кислорода в выхлопных газах. При высоком уровне кислорода датчик О2 снижает это пороговое напряжение ECU. При этом, важным параметром является скорость переключения датчика. В большинстве систем впрыска топлива О2-датчик имеет выходное напряжение от 40–100мВ. до 0.7–1В. Длительность фронта должна быть не более 120мСек. Следует отметить, что многие неисправности лямбда-зонда контроллерами не фиксируются и судить о его исправной работе можно только после
соответствующей проверки.
Проверку работоспособности датчика О2 лучше всего производить с помощью осциллографа. На Рис.3 показан сигнал нормально работающего лямбда-зонда на прогретом двигателе, работающего на ХХ.
На Рис.4 показан выходной сигнал еще работающего, но изрядно послужившего и практически забитого датчика О2. Данная осциллограмма зафиксировала падение амплитуды выходного сигнала ниже 0V, что говорит о неисправности датчика О2. Данная неисправность датчика чаще всего фиксируется системой самодиагностики и на приборной панели загорается лампочка «CHECK ENGINE», которая сигнализирует о неисправности.
На Рис.5 представлена наиболее распространенная «болезнь» датчиков содержания кислорода в выхлопных газах, которая выражена в замедленной его реакции. Время фронта сигнала (t) значительно превышает 120 мСек. Данная неисправность датчика неминуемо вызывает увеличенный расход топлива и заметное снижение динамики автомобиля, а система самодиагностики ее не зафиксирует, т.к. данный параметр не отслеживается контроллером.
Неисправности “замерзших» датчиков О2 не фиксируются контроллером, т.к.амплитудные значения сигналов не выходят из заданного для них диапазона. В большинстве систем впрыска топлива неисправности датчиков могут быть зафиксированы только при выходе их сигнала из этого заданного диапазона. Чаще всего это 0–1В.
Таким образом,однозначно фиксируется только полное отсутствие сигнала и его минусовое значение, в этих случаях ошибка индицируется лампой «CHECK ENGINE». Однако, следует заметить, что в некоторых ECU предусмотрена возможность диагностики и обнаружения неисправности по косвенным признакам (соотношение показаний датчика скорости автомобиля или датчика положения коленвала, датчика положения дроссельной заслонки, расходомера воздуха и др.). В этих случаях индикация «СЕ» может быть включена.
При обнаружении неисправности О2-датчика, контроллер переходит в режим управления впрыском по усредненным параметрам и завышает обогащение
Ресурс датчика содержания кислорода в выхлопных газах обычно составляет от 30 до 70 тыс.км. и в значительной степени зависит от условий эксплуатации. Дольше служат, как правило, датчики с подогревом. Рабочая температура для них обычно 315–320ёC. В конструкцию этих датчиков включен нагревающий элемент, имеющий на разъеме свои контакты. Проверку работоспособности нагревательного элемента таких датчиков можно производить обычным омметром. Сопротивление их обычно составляет от 3 до 15 Ом.
Демонтаж неисправного лямбда-зонда следует производить при температуре двигателя около 50ёC, в противном случае, из-за заклинивания, велик риск сорвать резьбу. Перед тем, как приступать к демонтажу, необходимо при выключенном зажигании отсоединить разъем датчика. На некоторых автомобилях, чтобы снять датчик О2, необходимо демонтировать защитный кожух выпускного тракта. Признаком неисправного лямбда-зонда может служить повышение расхода топлива и ухудшение динамики автомобиля, при этом возможен неустойчивый холостой ход двигателя.
В большинстве своем, сходные по конструкции датчики являются взаимозаменяемыми. Возможна и замена неподогреваемых на подогреваемые О2 (обратную замену я не рекомендую). Однако часто возникает проблема несовместимости разъемов и отсутствие дополнительных проводов питания для подогревающего элемента. При этих заменах можно самостоятельно проложить дополнительные провода и подключить подогреватель к реле зажигания или реле эл.бензонасоса. При этом следует учитывать, что ток потребления подогревателя может составлять до 8–12А. Если есть возможность, лучше эту цепь подключить через дополнительное реле и предохранитель, как показано на Рис.9.
На рис. показана схематика разъемов, которые чаще всего встречаются с распространенными датчиками содержания кислорода в выхлопных газах. Цветовая маркировка проводов, разъемов (и их конструкция) могут различаться и зависят от предприятия (фирмы) изготовителя конкретного датчика или автомобиля. Однако замечено, что сигнальный провод О2 чаще бывает более темного цвета, чем его подогревателя. Цветовая маркировка проводов подогревателя датчика, чаще всего бывает одноцветной (часто белого цвета), но отличной от сигнального провода.
В заключение хочу отметить, что датчик содержания кислорода в выхлопных газах устанавливается, как правило, в паре с катализатором. Многие автовладельцы считают, что они взаимосвязаны функционально и могут работать только в паре. Однако это не совсем так. В большинстве автомобилей лямбда-зонд установлен на выхлопном тракте до катализатора. В этом случае катализатор не может влиять на работу датчика, хотя обратная зависимость есть и заключается в том,чтобы система впрыска топлива регулировала топливную смесь не переобогащая ее, таким образом продляя срок службы катализатора.
Некоторые автовладельцы самостоятельно заменяют вышедший из строя катализатор на резонатор и отключают лямбда-зонд. В этом случае ECU работает по усредненным значениям и не может обеспечить оптимального приготовления состава топливной смеси. Кроме того, добиться низкого уровня содержания СО в выхлопных газах на таких автомобилях бывает весьма проблематично. Часто в этих случаях после отклю чения аккумулятора работа двигателя становится неустойчивой и не всегда оптимизируется даже после значительного пробега автомобиля, т.к. не во всех ECU есть система коррекции режимов сохраняемых в оперативной памяти и, при отключении питания, ECU теряет эти значения. Восстановление этих значений порой может быть дороже стоимости нового катализатора вместе с О2.
Бесконтрольность датчика О2 может привести к его полному разрушению, а ведь его основу составляют керамические пластины. Самым серьезным следствием отключенного
Для Чего Нужен Второй Лямбда Зонд ~ VIVAUTO.RU
какая Лямбда-зонд
Введение строгих экологических норм побудило автопроизводителей использовать каталитические нейтрализаторы на автомобилях. Это устройства, которые помогают снизить содержание токсичных газов. Каталитический нейтрализатор. полезная вещь, но он эффективно работает только при определенных условиях. Если вы не будете постоянно следить за составом топливовоздушной смеси, то катализаторы прослужат недолго.
И здесь приходит помощь лямбда-зонда или так называемого датчика кислорода (в английской литературе это называется лямбда-зонд или датчик кислорода). Ниже мы рассмотрим более подробно, что такое лямбда-зонд, как он работает и для чего он используется.
Как это устроено лямбда зонд
Лямбда-зонд диаграмма
Как упоминалось выше, лямбда-зонд представляет собой датчик кислорода. Он измеряет количество кислорода в выхлопе. Для правильного измерения он должен быть нагрет до температуры 300-400 ° C. Именно в этих условиях электролит, включенный в конструкцию кислородного датчика, приобретает проводимость. В этом случае разница в объеме атмосферного кислорода и кислорода, содержащихся в выхлопной трубе, приводит к появлению выходного напряжения на электродах лямбда-зонда.
Когда двигатель запускается и прогревается, впрыск топлива происходит без использования данных датчика кислорода; вместо этого состав топливно-воздушной смеси регулируется в соответствии с сигналами других датчиков:
- частота вращения коленчатого вала;
- Температура охлаждающей жидкости;
- положение дроссельной заслонки.
Для повышения чувствительности лямбда-зондов при низких температурах и после запуска холодного двигателя используется принудительный нагрев. Внутри керамического корпуса датчика находится нагревательный элемент, который подключается к электрической сети автомобиля.
Зачем мне это нужно? Лямбда-зонд
Как выглядит лямбда-зонд в машине
Лямбда-зонд используется для поддержания оптимального состава воздуха, поступающего в топливо двигатель машины. Оптимальный состав считается, когда на одну часть топлива приходится 14,6-14,8 частей воздуха. Этого можно достичь только с помощью электронных систем впрыска и использования лямбда-зонда в цепи обратной связи.
Лямбда-зонд. Для чего это? Как это работает? Где? ПРОВАЛ!
Лямбда-зонд. датчик кислорода мегаватт, который контролирует правильную работу двигателя (ов).
лямбда зонд (датчик кислорода). Как обмануть второй лямбда-зонд?
1 Работа системы впрыска. 2 Что такое лямбда ? 3 Как это работает лямбда ? 4 Почему лямбда нужна ? 5 Что происходит?
Измерение избытка воздуха в смеси осуществляется довольно оригинальным способом. путем определения содержания остаточного кислорода в выхлопных газах. Вот почему лямбда-зонд устанавливается перед катализатором в выпускном коллекторе. Электрический сигнал датчика считывается электронным блоком управления (ЭБУ), который, в свою очередь, оптимизирует состав смеси, изменяя количество топлива, подаваемого в цилиндры двигателя.
На некоторых моделях автомобилей другой лямбда-зонд расположен на выходе каталитического нейтрализатора. Это позволяет повысить точность приготовления смеси и контролировать эффективность катализатора.
В зависимости от конструкции есть два типа датчиков:
- Широкополосный. используется в качестве входного датчика;
- двухточечный. может быть установлен как на входе, так и на выходе катализатора. Принцип его работы основан на измерении кислорода в атмосфере и выхлопных газах.
Видео про лямбда зонд
Тест лямбда-зонда
смесь лямбда зонд
Датчик кислорода подает звуковой сигнал, когда обнаруживает изменение содержания кислорода. Этот сигнал передается в контроллер, который принимает его и сравнивает полученную информацию с сохраненными данными. Если полученные данные не соответствуют оптимальным значениям, блок управления изменяет длительность ввода. Это позволяет добиться следующих показателей:
- экономия топлива;
- максимальная производительность двигателя;
- снижение вредных выбросов.
Но немногие автомобилисты прислушиваются к этим рекомендациям и начинают напоминать датчик только при возникновении проблем. В результате большинство водителей видят это приборная доска Контрольный сигнал двигателя работает. Скорее всего, это вызвано неисправностью или неисправностью датчика кислорода. Решением этой проблемы будут загвоздки лямбда зонд, который является механическим и электронным.
Механическая загвоздка
При выборе смеси этого типа вместо катализатора устанавливается специальная прокладка. деталь из жаропрочной стали или бронзы со строго определенными размерами. Распорка сверлит отверстие малого диаметра, через которое в него могут попасть выхлопные газы.
Газы взаимодействуют с керамической крошкой, которая предварительно покрыта каталитическим слоем и размещена внутри прокладки. В результате этого взаимодействия происходит окисление СН и СО кислородом, после чего концентрация вредных веществ на выходе уменьшается.
Если на автомобиле установлены два кислородных датчика, сигналы от них будут разными, Устройство управления он распознает изменение синусоидальной волны сигнала и считает его нормальной работой катализатора. Этот вариант самый дешевый.
Читайте также: Что такое ЭБУ и как он взаимодействует с лямбда-зондом и другими датчиками.
Электронное мошенничество
Этот тип трюка гораздо сложнее. В продажу поступил очень высокотехнологичный L’Oil Trump со встроенным микропроцессором. Они не могут просто обмануть Устройство управления, и убедитесь, что он работает правильно. Микропроцессор, установленный в таком устройстве, может оценивать состояние выхлопного газа и генерировать сигнал, соответствующий сигналу от второго рабочего датчика, с работающим катализатором.
Лямбда-зонд: устройство и назначение
Лямбда-зонд (или еще словосочетание автомобилисты, лямбда-зонд) — это механизм, отвечающий за концентрацию и соотношение бензина и воздуха в топливно-воздушной смеси при ее приготовлении и подаче по топливным каналам в цилиндр двигателя. От правильности показаний этого прибора зависит общий расход топлива, мощность и динамика автомобиля. Фактически важность датчика сравнима с карбюратором и инжектором, поскольку оба принимают непосредственное участие в приготовлении топливной смеси.В сегодняшней статье мы узнаем, что такое лямбда-зонд, как он устроен и для чего предназначен.
Прибор
Основой (основным рабочим элементом) этого датчика является пористый керамический материал, изготовленный на диоксиде циркония. Сама конструкция устройства предполагает наличие следующих деталей:
- стальной кожух;
- манжеты проводов;
- керамический изолятор;
- контакт отопительного контура;
- электропроводка;
- Кольцо уплотнительное;
- наконечник из циркониевой керамики;
- стержень со спиралью накаливания;
- внутренний защитный экран со специальным отверстием для выхлопных газов;
- экран наружный с отверстием для атмосферного воздуха;
- токоприемник.
Где находится?
Часто лямбда-зонд (в том числе ВАЗ-2110) располагается в выхлопной системе, вне выхлопного коллектора. Также следует знать, что на некоторых автомобилях таких устройств может быть два. Один из них можно разместить перед катализатором, а второй — после него. Работа двух лямбда-зондов значительно повышает эффективность и точность подготовки топливно-воздушной смеси для ее дальнейшей подачи в камеру сгорания ДВС.
Принцип работы
Алгоритм работы этого устройства основан на свойствах оксида циркония. Поэтому его используют при температуре не ниже 350 градусов по Цельсию. В некоторых случаях для ускорения процесса нагрева используется специальный электронагреватель. Весь принцип работы лямбда-зонда можно разделить на несколько этапов:
- Отработанные выхлопные газы проходят через катализатор и выхлопную трубу. В этом случае они обтекают рабочую поверхность датчика лямбда-зонда, который расположен перед катализатором.
- Кроме того, это устройство анализирует уровень O2 в выхлопных газах и сравнивает данные с уровнем в атмосфере.
- Во время работы датчика создается разность потенциалов, после чего механизм посылает короткий электрический сигнал на ЭБУ двигателя.
- После этого компьютер обрабатывает данные и отправляет сигнал на определенное количество устройств, регулируя тем самым работу исполнительных механизмов.
Следует отметить, что в случае нехватки кислорода в системе, а именно в топливно-воздушной смеси, продукты сгорания не окисляются до конца.В этом случае автомобиль начинает терять обороты, и происходит увеличение расхода топлива (в камере образуется обедненная смесь). Если в системе слишком много воздуха, это приводит к неполному разложению оксида азота, что также не лучшим образом проявляется при работе двигателя.
p >>О том, как проверить лямбда-зонд
Если вас интересует вопрос, как проверить лямбда-зонд, то вы попали по адресу. Для проведения этого теста вам потребуются следующие предметы: инструкция по эксплуатации от производителя автомобиля (вам также необходимо узнать, где он находится), осциллограф и, наконец, вольтметр.Когда вы все это соберете, то приступайте к прогреву двигателя автомобиля до рабочей температуры.
Знакомимся с инструкцией, а именно с какими основными показателями стоит ваш лямбда-зонд. Тест охватывает следующие параметры, которые реагируют на некорректную работу кислородного датчика. Это напряжение в электрической сети, это включает опережение зажигания, а также работу системы, отвечающей за подачу топлива. Также следует обратить внимание на внешние поверхности различных механизмов, а именно, чтобы исключить наличие каких-либо механических повреждений их, их корпуса или в проводке.
Далее заглядываем в моторный отсек, где находим лямбда-зонд. Его необходимо осмотреть сверху вниз и обратить внимание на степень его загрязнения. Слой сажи, свинца или серо-белый налет на кончике подсказывает мастеру, что его нужно заменить. Это говорит об использовании некачественного топлива. Если загрязнения нет, переходите к следующему шагу.
Если еще интересно, как проверить лямбда-зонд, отключите его от колодки и сразу подключите к вольтметру.Заводим двигатель и увеличиваем обороты до двух с половиной тысяч оборотов в минуту. Теперь с помощью устройства обогащения снизьте обороты двигателя до отметки в две тысячи об / мин.
Если ваша машина оборудована топливной системой с электронным управлением, вам необходимо вытащить вакуумную трубку из регулятора давления топлива. Теперь посмотрим на показания вольтметра. Если он показывает значение, близкое к 0,9 В, то датчик в порядке. Если ничего не отображается или значение меньше 0.8 Вольт — это указывает на неисправность. Но вопрос, как проверить лямбда-зонд, пока полностью не раскрыт.
Следующим шагом будет проверка бедности смеси. Берем вакуумную трубку и провоцируем подсасывание воздуха. При хорошем кислородном датчике показание вольтметра должно быть 0,2 В или ниже.
Теперь надо проверить работу лямбда-зонда в динамике. Для этого необходимо подключить его к разъему подачи топлива. После этого подключите к нему параллельно вольтметр.Далее увеличиваем обороты двигателя до отметки в полторы тысячи оборотов в минуту. Вольтметр в этот момент должен показывать ровно 0,5 вольт. Если это не так, датчик неисправен.
Вот в принципе и вся мудрость как проверить лямбда-зонд. Никаких специальных знаний не требуется, и все можно сделать дома без проблем. Проверяйте эту деталь периодически, ведь качество топлива на наших заправках не соответствует нормам, а это способствует быстрому истощению ресурса лямбда-зонда и не только.Как только вы обнаружите, что он пришел в негодность — немедленно произведите замену. Удачи на дорогах и поменьше неудач.
p >>Из чего состоит лямбда-зонд?
Примерно на 110–150 тысяч км пробега практически все автомобилисты сталкиваются с проблемой появления зловещей «Check Engine» на приборной панели. Причиной тому может быть отказавший катализатор. Обычно лампа Check Cheg загорается из-за лямбда-зонда. В нашем случае он дает электронному блоку управления двигателем сигнал, уведомляющий о некорректной работе каталитического нейтрализатора.Чтобы исключить такую проблему, автомобилисты монтируют такую деталь, как лямбда-зонд. С его помощью датчик будет подавать на электронный блок «правильный» сигнал о состоянии катализатора и выхлопах в системе.
На данный момент существует три вида обмана:
- Механический . Это самый распространенный вариант у автомобилистов.
- Электронный .
- Электронный эмулятор Работа лямбда-зонда.
Чем они отличаются друг от друга?
Все представленные детали имеют много отличий, прежде всего в ценовой категории. Первый вид самый простой и, соответственно, дешевый. Часто это деталь из специальной жаропрочной стали размером 2 х 1,2 сантиметра. Такой обманчивый лямбда-зонд выдерживает температуру до 650 градусов Цельсия. Остальные детали также довольно выносливы и функциональны, но их стоимость превышает все допустимые пределы, поэтому механический вариант лидирует во всех списках.Также стоит обратить внимание на то, что связка комплекта перегибается. Предназначен для установки в труднодоступных местах, где нет обычной распорки. Изогнутый лямбда-зонд может вращаться на 360 градусов и при этом оставаться работоспособным. Однако расстояние от выхлопной гайки до центра оси щупа не более 12 миллиметров. Для сравнения: у механической бленды лямбда-зонда расстояние между такими же элементами составляет 35 мм.
Какая от них польза?
Деформация лямбда-зонда в первую очередь снижает расход топлива автомобилем.Кроме того, значительно увеличена мощность двигателя. Как правило, это значение составляет 4-5 процентов. Этот «бонус» возникает из-за снижения сопротивления выхлопных газов в катализаторе.
Что выбрать?
Однозначно, лучшим вариантом будет механическая обманка. Это небольшая деталь с резьбой, благодаря которой изделие вкручивается в эмулятор. Также положительно то, что механическая смесь имеет в своем составе платино-родиевый каталитический элемент, который аналогичен матрице исходного катализатора.В результате датчик зонда будет получать только ту информацию о топливовоздушной смеси, которая соответствует мировым экологическим нормам.
Подходит ли эта механическая обманка для лямбда-зонда отечественного автомобиля?
Подходит ко всем современным автомобилям, будь то японская «Мазда» или отечественный ВАЗ. Если быть более точным, то заглушка устанавливается на тех машинах, в которых прикручены лямбда-зонды (а это большинство автомобилей).
p >>Лямбда-зонд — как они работают, для чего служат
Ни один современный двигатель внутреннего сгорания со всей мощностью его электроники не стоил бы почти ни крупицы без электрических сигналов, полученных от крошечного электромеханического элемента, размещенного в выхлопной трубе автомобиля.Обязательно угадайте, что это за элемент, это лямбда-зонд…
Лямбда-зонд должен посылать определенный сигнал напряжения электронному блоку управления (ЭБУ), который распознает текущий состав топливовоздушной смеси. Чтобы лямбда-зонд функционировал должным образом, он должен быть предварительно нагрет энергией, полученной от потока горячих, сгоревших газов, до определенной температуры, необходимой для его правильного функционирования во всем рабочем диапазоне двигателя.
Принцип работы
Лямбда-зонд помещается в поток выхлопных газов и сконструирован так, что внешний электрод окружен выхлопными газами, а внутренний электрод доступен для атмосферного воздуха.Основание лямбда-зонда состоит из специального керамического элемента, поверхность которого покрыта пористым платиновым электродом. Работа зонда основана на том факте, что керамический материал пористый и позволяет диффузию (проникновение) кислорода, присутствующего в воздухе. При более высоких температурах он становится проводящим, и если концентрация кислорода на одной стороне отличается от концентрации кислорода на другой, то между электродами создается напряжение . В области стехиометрической смеси воздуха и топлива (l = 1,00) наблюдается скачок кривой выходного напряжения энкодера. Это напряжение является измерительным сигналом.
Строительство
Корпус керамического лямбда-зонда помещен в полый корпус с защитным колпачком и электрическим соединением. Поверхность керамического тела лямбда-зонда имеет микропористый слой платины, который, с одной стороны, точно влияет на характеристики зонда, а с другой стороны, он служит электрическим контактом. Керамическое покрытие с высокой адгезией и пористостью нанесено на платиновый слой на конце керамического корпуса, который подвергается воздействию выхлопных газов.Этот защитный слой защищает слой платины от эрозии твердыми частицами выхлопных газов. Со стороны электрического подключения (вне выхлопной трубы) поверх лямбда-зонда, ввинчиваемого в корпус, надевается защитная металлическая оболочка. Эта оболочка имеет отверстие для компенсации давления внутри лямбда-зонда, а также служит опорой для тарельчатой пружины. Соединительные провода скручены в контактный элемент и пропущены через изоляционную оболочку снаружи лямбда-зонда.Чтобы отложения продуктов сгорания в выхлопных газах не попадали в керамический корпус, конец лямбда-зонда, который проникает в поток выхлопных газов, защищен специальной защитной трубкой с отверстиями, спроектированными таким образом, что выхлопные газы и твердые частицы не попадают в него. в прямом контакте с керамическим (ZrO2) корпусом.
В дополнение к предусмотренной механической защите удалось снизить эффективное изменение температуры лямбда-зонда при переходе от одной рабочей формы к другой.
Выходное напряжение энкодера λ, а также его внутреннее сопротивление зависят от температуры. Надежная работа лямбда-зонда возможна только при температуре выхлопных газов выше 350 градусов Цельсия (без подогрева) и выше 200 градусов по Цельсию (с подогревом).
Подогреваемый лямбда-зонд
Конструкция обогреваемого лямбда-зонда во многом идентична конструкции ненагреваемого лямбда-зонда. Активная керамика лямбда-зонда нагревается изнутри керамическим нагревательным элементом, благодаря чему температура керамического тела всегда остается выше функционального предела в 250 градусов Цельсия.Нагреваемый лямбда-зонд снабжен защитным колпачком с меньшими отверстиями. Помимо прочего, он защищает керамику лямбда-зонда от охлаждения при холодных выхлопных газах. К преимуществам обогреваемого лямбда-зонда можно отнести: надежное и эффективное управление при низких температурах выхлопных газов (например, на холостом ходу), минимальное влияние изменений температуры выхлопных газов, быстрое достижение эффекта лямбда-регулирования после запуска двигателя, быстрая реакция энкодера, который предотвращает большие отклонения от идеального состава выхлопных газов, независимость положения энкодера на выхлопном патрубке, поскольку не зависит от нагрева окружающей среды.
Узел лямбда-регулятора с обратной связью
Лямбда-регулирование с замкнутым контуром фактически представляет собой наличие обратной связи от лямбда-зонда к двигателю, то есть к блоку управления, и с его помощью можно очень точно поддерживать соотношение воздух-топливо на уровне λ = 1,00. . При использовании узла управления с обратной связью, образованного посредством упомянутого лямбда-зонда, отклонения от заданного отношения воздух-топливо могут быть установлены и исправлены. Этот принцип управления основан на путем измерения содержания кислорода лямбда-зондом в выхлопе.
Кислород в выхлопных газах — это мера состава смеси воздуха и топлива, которая соответствует перед двигателем . Лямбда-зонд работает, посылая информацию (электрические импульсы), является ли смесь богаче или беднее, чем λ = 1,00. В случае отклонения от этого значения напряжение выходного сигнала энкодера резко меняется. Это изменение обрабатывается в центральном компьютерном блоке (ЭБУ), оборудованном для этой цели системой управления с обратной связью.
Впрыск топлива в двигатель контролируется системой управления впрыском и по информации лямбда-зонда о составе топливовоздушной смеси.Этот контроль таков, что достигается соотношение воздух-топливо λ = 1. Напряжение лямбда-зонда фактически является мерой корректировки количества топлива в смеси воздуха и топлива, поступающей в цилиндр.
Прежде чем подать достоверный сигнал, лямбда-зонд должен достичь температуры выше 350 градусов. Пока эта температура не будет достигнута, регулирование с обратной связью приостанавливается, и смесь топлива и воздуха формируется на среднем уровне с помощью регулирования без обратной связи. Здесь логично возникает вопрос, всегда ли значение лямбда-коэффициента после достижения рабочей температуры на всем рабочем режиме двигателя равно единице? Конечно нет.В зависимости от текущих пожеланий и потребностей водителя это значение может составлять от 0,8 до 1,2. Если, например, требуется внезапное и резкое ускорение, центральный компьютер переключает впрыск топлива в режим разомкнутого контура и впрыскивает столько топлива, сколько необходимо для достижения желаемой работы двигателя (λ <1). То же самое относится и к случаям, когда требуется торможение двигателем, что характерно для длинных спусков, тогда в двигатель будет впрыскиваться меньше топлива, чем обычно, на определенное количество оборотов (λ> 1).
Хотя лямбда-зонд работает с очень высокой точностью ± 1%, допуски и старение двигателя не влияют на лямбда-регулирование с обратной связью.
Подготовил: Душан Кович
Получено с: www.motorna-vozila.com
Датчик кислорода был изобретен в 1975 году инженерами Роберта Боша в ответ на экологические требования США по контролю выбросов автомобилей. Изначально лямбда-зонды устанавливались только на бензиновые автомобили с системой впрыска.
Лямбда-зонд первого поколения выдержал 20 000 километров. И первым автомобилем, на котором датчик был установлен в 1977 году, стал Volvo Model 244.
Второе поколение лямбда-зонда появилось в 1982 году. Эти датчики уже выдержали более высокие температуры и увеличили срок службы.
Крупнейшие производители лямбда-зондов: Bosch (Германия), Denso (Япония), NGK (Япония), Delphi (Великобритания)…
Это зависит от материала керамического наконечника, наличия нагревательного зонда и других факторов.В среднем современный лямбда-зонд имеет срок службы от 60 до 000 км, но специалисты советуют проверять его каждые 80 км.
Лямбда-зонд — один из самых чувствительных датчиков в автомобиле.
Однако это довольно расплывчатые симптомы, потому что индикатор проверки двигателя загорается, когда в компьютере много разных сбоев, включая некачественное топливо. Только диагностика на месте может дать правильный ответ, с которым нельзя откладывать. Дело в том, что неисправный лямбда-зонд может значительно снизить ресурс катализатора и вывести из строя другие узлы и детали.В результате ремонт будет дороже.
Из чего состоит лямбда-зонд?
Примерно на 110–150 тысяч км пробега практически все автомобилисты сталкиваются с проблемой появления зловещей «Check Engine» на панели приборов. Причиной тому может быть отказавший катализатор. Обычно лампа Check Cheg загорается из-за лямбда-зонда. В нашем случае он дает электронному блоку управления двигателем сигнал, уведомляющий о некорректной работе каталитического нейтрализатора.Чтобы исключить такую проблему, автомобилисты монтируют такую деталь, как лямбда-зонд. С его помощью датчик будет подавать на электронный блок «правильный» сигнал о состоянии катализатора и выхлопах в системе.
На данный момент существует три вида обмана:
- Механический . Это самый распространенный вариант у автомобилистов.
- Электронный .
- Электронный эмулятор Работа лямбда-зонда.
Чем они отличаются друг от друга?
Все представленные детали имеют много отличий, прежде всего в ценовой категории. Первый вид самый простой и, соответственно, дешевый. Часто это деталь из специальной жаропрочной стали размером 2 х 1,2 сантиметра. Такой обманчивый лямбда-зонд выдерживает температуру до 650 градусов Цельсия. Остальные детали также довольно выносливы и функциональны, но их стоимость превышает все допустимые пределы, поэтому механический вариант лидирует во всех списках.Также стоит обратить внимание на то, что связка комплекта перегибается. Предназначен для установки в труднодоступных местах, где нет обычной распорки. Изогнутый лямбда-зонд может вращаться на 360 градусов и при этом оставаться работоспособным. Однако расстояние от выхлопной гайки до центра оси щупа не более 12 миллиметров. Для сравнения: у механической бленды лямбда-зонда расстояние между такими же элементами составляет 35 мм.
Какая от них польза?
Деформация лямбда-зонда в первую очередь снижает расход топлива автомобилем.Кроме того, значительно увеличена мощность двигателя. Как правило, это значение составляет 4-5 процентов. Этот «бонус» возникает из-за снижения сопротивления выхлопных газов в катализаторе.
Что выбрать?
Однозначно, лучшим вариантом будет механическая обманка. Это небольшая деталь с резьбой, благодаря которой изделие вкручивается в эмулятор. Также положительно то, что механическая смесь имеет в своем составе платино-родиевый каталитический элемент, который аналогичен матрице исходного катализатора.В результате датчик зонда будет получать только ту информацию о топливовоздушной смеси, которая соответствует мировым экологическим нормам.
Подходит ли эта механическая обманка для лямбда-зонда отечественного автомобиля?
Подходит ко всем современным автомобилям, будь то японская «Мазда» или отечественный ВАЗ. Если быть более точным, то заглушка устанавливается на тех машинах, в которых прикручены лямбда-зонды (а это большинство автомобилей).
p >>Лямбда-зонд 20 ВОПРОСОВ И ОТВЕТОВ
E — ТЕОРИЯ / ОПЕРАЦИЯ
E — ТЕОРИЯ / ЭКСПЛУАТАЦИЯ 1995 Volvo 850 1995 ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ Volvo — Теория и принцип работы 850 ВВЕДЕНИЕ В этой статье дается базовое описание и принцип работы систем и компонентов, связанных с характеристиками двигателя.
Дополнительная информацияЭлектронная система управления дизельным двигателем EDC 16
Обслуживание. Программа самообучения 304 Электронная система управления дизельным двигателем EDC 16 Конструкция и принцип действия Новая система управления двигателем EDC 16 от Bosch впервые используется в двигателях V10-TDI и R5-TDI. Растущие потребности
Дополнительная информацияЗагрязнение от двухтактных двигателей
Загрязнение от 2-тактных двигателей по Engr.Национальный автомобильный совет Амину Джалала на нигерийской конференции по чистому воздуху, чистому топливу и транспортным средствам, Абуджа, 2-3 мая 2006 г. Знакомство с 2-тактным двигателем
Дополнительная информацияОбзор. Техническое обучение
Обзор Дизельные частицы обычно представляют собой частицы сажи с прилипшими углеводородами, сульфатом и другими конденсированными соединениями. Юридически твердые частицы — это все, что может быть уловлено в потоке выхлопных газов
Дополнительная информацияПочему у датчиков кислорода есть нагреватели?
Техническая статья Название Автор Дата Диагностика кодов нагревателя датчика кислорода Shard7 2007 Введение Современные датчики кислорода включают в себя электрический нагревательный элемент, и, как и следовало ожидать, неисправность нагревателя
Дополнительная информацияДизель: устранение неисправностей
Дизель: Устранение неисправностей Возможная причина Двигатель не запускается Трудно запускается двигатель Неровная работа на более низких оборотах Недостаточная мощность Детонация / пинк дизельного двигателя Черный Белый Синий Низкое сжатие X X X Низкое давление топлива X X
Дополнительная информацияВпрыск топлива в корпус дроссельной заслонки
Впрыск топлива в корпус дроссельной заслонки Первоначальная калибровка заявления об отказе от ответственности за TBI Автор данной презентации НЕ несет ответственности за предоставленную информацию, заставляющую владельца модифицировать или переделывать свой дом на колесах
Дополнительная информацияЭлектронное управление мощностью
Обслуживание.Программа самообучения 210 Устройство и принцип работы электронного регулятора мощности В системе электронного регулятора мощности дроссельная заслонка приводится в действие только электродвигателем. Это устраняет необходимость
Дополнительная информацияТиповые входы ECM / PCM
Типичные входы ECM / PCM Компоненты компьютерной системы делятся на две категории: датчики (входы) и управляемые компоненты (выходы). В каждой системе есть датчики. Не в каждой системе есть все перечисленные,
Дополнительная информацияВведение в электронные сигналы
Знакомство с электронными осциллографами сигналов Осциллограф отображает изменения напряжения во времени.При необходимости во время диагностики цепей используйте осциллограф для просмотра аналоговых и цифровых сигналов. Рис. 6-01
Дополнительная информацияДиагностика поршня: приблизительное руководство
Диагностика поршней: приблизительное руководство Процесс осмотра бывших в употреблении поршней может дать нам много полезной информации о состоянии двигателя. При отказе двигателя поршень скорее всего займет
Дополнительная информацияИнструкция по установке
Инструкции по установке Выхлопная система Akrapovič: съемная для Audi R8 Coupe 5.2 FSI Quattro Audi R8 Spyder 5.2 FSI Quattro Audi R8 FL Coupe 5.2 FSI Quattro Audi R8 FL Spyder 5.2 FSI Quattro www.akrapovic.com
Дополнительная информацияСистемы управления двигателем автомобиля
Раздел 11: Системы управления двигателем транспортных средств Уровень NQF 3: Часы обучения: 60 Тезисов национального подразделения BTEC Современные автомобили продолжают использовать стремительные достижения в области электронных технологий
Дополнительная информацияГЛАВА 3 ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА
ГЛАВА 3 ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА 3.1 ВВЕДЕНИЕ Испытания на выбросы проводились на испытательном стенде для четырехтактных 4-цилиндровых бензиновых двигателей Izusu с гидравлической динамометрической системой нагружения. Технические характеристики
Дополнительная информацияLotus Service Notes Section EMR
РАЗДЕЛ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ Подраздел EMR Страница Список диагностических кодов неисправностей EMR.1 3 Компонент Функция EMR.2 7 Расположение компонентов EMR.3 9 Руководство по диагностике EMR.4 11 Диагностика шины CAN; Lotus TechCentre
Дополнительная информацияТребования к заявке
Мониторы опасных газов Обзор выбора датчика Мониторинг безопасности (LEL) Обнаружение предельного уровня токсичных газов (PEL) Обнаружение утечек Требования для обеспечения личной безопасности Оценка воздействия (TWA) Качество окружающего воздуха
Дополнительная информацияВопросы и ответы
Гарантии на выбросы загрязняющих веществ для легких легковых автомобилей и грузовиков 1995 года выпуска и более новых автомобилей с полной массой менее 8 500 фунтов (GVWR) Требуемые на федеральном уровне гарантии контроля выбросов защищают вас, владельца транспортного средства, от
Дополнительная информацияОСМОТР ПЕРЕД ПОЕЗДКОЙ
ПРОВЕРКА ПЕРЕД ЭКСПЛУАТАЦИЕЙ Перед поездкой проверьте следующее.ПУНКТ Двигатель с трансмиссионным маслом Топливо Шины Аккумулятор Спидометр Освещение Рулевое управление Дроссельная заслонка Сцепление Тормоза Колеса ЧТО ПРОВЕРИТЬ Наличие
Дополнительная информацияПроблемы сажи и накипи
Доктор Альбрехт Каупп Page 1 Проблемы сажи и накипи Проблема Сажа и накипь не только увеличивают потребление энергии, но также являются основной причиной выхода из строя трубок. Цели обучения Понимание последствий
Дополнительная информацияПоиск неисправностей.Насос
Поиск и устранение неисправностей насоса Неисправность Возможная причина Способ устранения Утечка масла в области водяного насоса коленвала Изношенная уплотнение коленчатого вала, плохой подшипник, рифленый вал, или отказ держателя о-кольца. Чрезмерный люфт коленвала
Дополнительная информацияLotus Service Notes Раздел EMP
РАЗДЕЛ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ Подраздел EMP Страница Список диагностических кодов неисправностей EMP.1 3 Диагностический инструмент «Lotus Scan» EMP.2 43 Расположение компонентов системы управления двигателем EMP.3 45 Процедура настройки механической дроссельной заслонки
Дополнительная информацияСистема улавливания паров топлива
просто тест. Система улавливания паров топлива 20-48 Описание функций системы адсорбера СУПБ В зависимости от давления воздуха и температуры окружающей среды пары топлива будут образовываться выше уровня топлива в
. Дополнительная информацияРуководство по хорошему тестированию на герметичность
Page 0 Руководство по хорошему испытанию на герметичность Институт холода в сотрудничестве с Carbon Trust предлагает вам НАСТОЯЩИЙ нулевой выброс хладагента и нулевые потери.Цель этого проекта — в названии нулевой хладагент
. Дополнительная информацияKolbenschmidt Pierburg Group
Kolbenschmidt Pierburg Group Рециркуляция выхлопных газов Снижение выбросов с помощью систем рециркуляции выхлопных газов Рециркуляция выхлопных газов Pierburg вносит вклад в чистую окружающую среду более 30
Дополнительная информацияИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ИНВЕРТОРА TIG
ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ИНВЕРТОРА TIG Содержание Предупреждение Общее описание Блок-схема Основные параметры Принципиальная схема Установка и эксплуатация Предостережение Техническое обслуживание Список запасных частей Устранение неисправностей 3 4 4
Дополнительная информацияВпрыск топлива в Орегоне
FORD POWERSTROKE DIAGNOSTICS 1994-2003 Это руководство не заменяет соответствующие руководства по диагностике и диагностический прибор.Он предназначен для использования с соответствующими инструментами, которые помогут диагностировать и решить проблему управляемости
. Дополнительная информацияСИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ
СИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ 1988 Toyota Celica 1987-88 TOYOTA Engine Cooling Systems Celica ОПИСАНИЕ Базовая система жидкостного охлаждения состоит из радиатора, водяного насоса, термостата, вентилятора охлаждения, герметичной крышки,
Дополнительная информацияNissan Figaro — Расход топлива
Nissan Figaro — Расход топлива Прежде всего, какого расхода топлива нужно достичь в Figaro ?… Реалистичная общая цифра составляет 32 35 миль на галлон, но, конечно, есть много факторов, которые будут влиять на
. Дополнительная информацияПОДГОТОВКА К ИСПЫТАНИЮ
Оглавление ВВЕДЕНИЕ ЧТО ТАКОЕ OBD? … 1 ВЫ МОЖЕТЕ ЭТО СДЕЛАТЬ! … 2 МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРЕЖДЕ ВСЕГО! … 3 О ПРИКРЫВАЕМЫХ ТРАНСПОРТНЫХ СРЕДСТВАХ СКАНИРОВАНИЯ … 5 ЗАМЕНА БАТАРЕИ …
Дополнительная информацияЧИСТЫЙ АВТОМОБИЛЬ Технологии
ТЕХНОЛОГИИ ЧИСТЫХ АВТОМОБИЛЕЙ ВВЕДЕНИЕ Технологии чистых транспортных средств теперь должны быть приняты региональными производителями автомобилей, сборкой, импортом новых и подержанных автомобилей, розничной торговлей и сервисом
Дополнительная информацияMercedes-Benz ML320 2001 года
ИДЕНТИФИКАЦИЯ МОДЕЛИ 2001-04 СИСТЕМЫ ЗАПУСКА И ЗАРЯДКИ Стартеры — 163 Шасси ПРЕДУПРЕЖДЕНИЕ: Автомобили оборудованы дополнительной удерживающей системой подушек безопасности.Перед ремонтом рулевого управления
Дополнительная информацияОБ ИНСТРУМЕНТЕ ДИАГНОСТИКИ
Оглавление ВВЕДЕНИЕ ЧТО ТАКОЕ OBD? … 1 ВЫ МОЖЕТЕ ЭТО СДЕЛАТЬ! … 2 МЕРЫ ПРЕДОСТОРОЖНОСТИ В первую очередь безопасность! … 3 О ДИАГНОСТИЧЕСКОМ ИНСТРУМЕНТАХ … 5 ЗАМЕНА АККУМУЛЯТОРНОЙ БАТАРЕИ … Дополнительная информация
МОЛЕКУЛЯРНЫЕ НАСОСЫ СЕРИИ MDP
МОЛЕКУЛЯРНЫЕ НАСОСЫ СЕРИИ MDP МОЛЕКУЛЯРНЫЕ НАСОСЫ СЕРИИ MDP Если вам необходимо: заменить пластинчато-роторный насос сухим насосом для приложения с 10-3 турбонасосом, который может работать до 10 насосом, который может работать с
Дополнительная информацияОдноканальный петлевой детектор
Модель одноканального петлевого детектора — серия LD100 LD100 — это одноканальный индуктивный петлевой детектор, разработанный для приложений парковки и контроля доступа.Извещатель подключен к индуктивной петле
. Дополнительная информацияБортовые диагностические коды неисправностей
Бортовые диагностические коды неисправностей В приведенном ниже списке содержатся стандартные диагностические коды неисправностей (DTC), которые используются некоторыми производителями для выявления проблем автомобиля.