Главная / Разное / Прямая полярность или обратная: Прямая и обратная полярность аккумулятора

Прямая полярность или обратная: Прямая и обратная полярность аккумулятора

Содержание

Прямая или обратная полярность аккумулятора

Многие клиенты нашего магазина при разговоре с продавцом часто задают один и тот же вопрос: какая полярность аккумулятора на моем автомобиле? Это один из самых важных параметров при подборе и его не следует игнорировать.

 

В данной статье мы постараемся объяснить что же такое полярность и зачем вообще она нужна. В данном вопросе очень легко разобраться, так как у этого параметра существует всего три значения: прямая, обратная и универсальная. Однако есть одна особенность: полярность легковых и грузовых АКБ определяется по-разному.

 

 

Как определить полярность легкового аккумулятора (до 110 ач).

Чтобы выяснить полярность легкового аккумулятора нужно обратить внимание на то, как расположены его клеммы. Для этого батарею необходимо развернуть (мысленно или фактически) контактами к себе. Обычно клеммы конструктивно располагаются ближе к одной из сторон источника питания (кроме моделей с универсальной полярностью), этой стороной и поворачиваем.

 

 

 

Как определить полярность грузового аккумулятора (более 110 ач).

В профессиональной среде полярность у грузовых АКБ принято определять другим способом, отличным от легковых. Разница в том, что корпус батареи необходимо располагать наоборот, клеммами от себя и в таком положении определять полярность.

 

 

Почему важно правильно определить полярность акб?

От этой характеристики зависит, сможете ли вы подключить батарею к бортовой сети автомобиля или нет. У всех популярных моделей аккумуляторов клеммы специально делают разного диаметра, а провода без запаса по длине. «Минус» всегда имеет меньший диаметр по сравнению с «плюсом». Благодаря этому, при подключении их невозможно перепутать.

 

 

Полярность аккумулятора: прямая, обратная, универсальная.

Прямая полярность аккумулятора означает, что плюсовая клемма будет находиться слева, относительно ближнего к наблюдателю края корпуса. Аккумуляторные батареи такого типа используются практически любыми автопроизводителями. Чаще всего  встречается на автомобилях, произведенных в Америке (Dodge, Chrysler, Hummer и т.д.), Китае (Chery, Lifan и т.д.) или России (ВАЗ, ГАЗ, УАЗ).

 

Аккумуляторы обратной полярности являются наиболее распространенными. Устанавливаются на европейских, корейских или японских машинах (кроме тех, что произведены для внутреннего рынка Японии). Обратная полярность АКБ означает, что «минус» располагается слева, если повернуть электробатарею клеммами к себе.

 

Универсальная полярность аккумулятора характерна для тягачей, спецтехники или моторных лодок. У таких батарей  выводы для подключения к электропроводке  расположены на продольной оси корпуса, либо на его противоположных углах. Таким образом, если контактный провод не дотягивается до нужной клеммы, батарею можно развернуть на 180 градусов и она встанет «как влитая».

 

 

Прямая или обратная полярность аккумулятора

Многие клиенты нашего магазина при разговоре с продавцом часто задают один и тот же вопрос: какая полярность аккумулятора на моем автомобиле? Это один из самых важных параметров при подборе и его не следует игнорировать.

 

В данной статье мы постараемся объяснить что же такое полярность и зачем вообще она нужна. В данном вопросе очень легко разобраться, так как у этого параметра существует всего три значения: прямая, обратная и универсальная. Однако есть одна особенность: полярность легковых и грузовых АКБ определяется по-разному.

 

 

Как определить полярность легкового аккумулятора (до 110 ач).

Чтобы выяснить полярность легкового аккумулятора нужно обратить внимание на то, как расположены его клеммы. Для этого батарею необходимо развернуть (мысленно или фактически) контактами к себе. Обычно клеммы конструктивно располагаются ближе к одной из сторон источника питания (кроме моделей с универсальной полярностью), этой стороной и поворачиваем.

 

 

 

Как определить полярность грузового аккумулятора (более 110 ач).

В профессиональной среде полярность у грузовых АКБ принято определять другим способом, отличным от легковых. Разница в том, что корпус батареи необходимо располагать наоборот, клеммами от себя и в таком положении определять полярность.

 

 

Почему важно правильно определить полярность акб?

От этой характеристики зависит, сможете ли вы подключить батарею к бортовой сети автомобиля или нет. У всех популярных моделей аккумуляторов клеммы специально делают разного диаметра, а провода без запаса по длине. «Минус» всегда имеет меньший диаметр по сравнению с «плюсом». Благодаря этому, при подключении их невозможно перепутать.

 

 

Полярность аккумулятора: прямая, обратная, универсальная.

Прямая полярность аккумулятора означает, что плюсовая клемма будет находиться слева, относительно ближнего к наблюдателю края корпуса. Аккумуляторные батареи такого типа используются практически любыми автопроизводителями. Чаще всего  встречается на автомобилях, произведенных в Америке (Dodge, Chrysler, Hummer и т.д.), Китае (Chery, Lifan и т.д.) или России (ВАЗ, ГАЗ, УАЗ).

 

Аккумуляторы обратной полярности являются наиболее распространенными. Устанавливаются на европейских, корейских или японских машинах (кроме тех, что произведены для внутреннего рынка Японии). Обратная полярность АКБ означает, что «минус» располагается слева, если повернуть электробатарею клеммами к себе.

 

Универсальная полярность аккумулятора характерна для тягачей, спецтехники или моторных лодок. У таких батарей  выводы для подключения к электропроводке  расположены на продольной оси корпуса, либо на его противоположных углах. Таким образом, если контактный провод не дотягивается до нужной клеммы, батарею можно развернуть на 180 градусов и она встанет «как влитая».

 

 

Что такое полярность аккумулятора и как ее определить?

На сайте по продаже новых аккумуляторов, просматривая ассортимент, можно наткнуться на данный пункт в описании АКБ: полярность — обратная, или полярность — прямая.

Что такое полярность аккумулятора?

Полярность аккумуляторной батареи — это расположение токовыводов (клемм) на верхней крышке АКБ относительно края корпуса батареи или его лицевой стороны.

Как она определяется?

Дело в том, что в машине аккумулятор может быть установлен по разному: боком, полубоком, клеммами от себя и клеммами к себе. На некоторых марках авто аккумулятор может быть как прямой, так и обратной полярности. Иной раз, сами автовладельцы переделывают посадочное место для аккумулятора, чтобы поставить АКБ не заводской полярности. Поэтому полярность всех аккумуляторов определяется путём разворачивания (не буквально, мысленно) АКБ клеммами ближе к себе. Далее мы смотрим, где положительный токовывод (плюс), а где отрицательный (минус). Если минус справа, а плюс слева — полярность прямая, если наоборот — обратная. Давайте закрепим наглядно, как отличить обратную полярность от прямой, когда клеммами «к себе» и «от себя» (красная клемма — плюсовая, черная — минусовая):

Теперь закрепим на примере установленного аккумулятора в машине:

Пример 1. Если аккумулятор развернуть клеммами ближе к себе, плюсовая клемма будет слева. Значит делаем вывод: полярность – прямая.

Пример 2. Держим в голове правило: клеммами «к себе». Плюс справа, значит полярность – обратная.

Пример 3. Мысленно разворачиваем АКБ к себе. Плюс будет справа, значит полярность обратная.

Пример 4. Клемма с края корпуса АКБ. Плюс слева. Полярность прямая.

Пример 5. Если аккумулятор развернуть клеммами ближе к себе, плюс будет справа. Полярность обратная.

Зная полярность аккумулятора для вашей машины, вы экономите время при выборе нового АКБ и избавляете себя от потери времени на возврат, если случайно купили батарею с неподходящей полярностью. И не забудьте, что полярность аккумулятора определяется при расположении клемм «ближе к себе». Удачи!

что это такое, описания и примеры

При осуществлении соединения элементов конструкций сваркой, их монтаже и ремонте одним из вариантов является использование постоянного тока. Немаловажным фактором служит правильная настройка применяемой аппаратуры. Чтобы это осуществить, следует четко понимать, что такое прямая и обратная полярность при сварке.

Выбор зависит от поставленной задачи, которую необходимо решить. Полярность применительно к оборудованию означает один из вариантов его использования. Полярность при сварке влияет на протекание физических процессов во время производственного процесса. При переключении на другой вариант ток начинает течь в ином направлении, и сварка будет осуществляться по-другому. Это понятие во многом имеет отношение к сварке, осуществляемой с инвертором.

Дуговая сварка — режимы полярности

Для соединительных операций сваркой обычно находит применение ток неизменного значения. Имеется возможность выбирать, как будет осуществлена сварка постоянным током — обратной или прямой полярности.

Установка, предполагающая полярность прямую, позволяет качественно сваривать детали, обладающие немалой толщиной. Сварка током обратной полярности помогает избежать такого трудно исправляемого дефекта, как прожег, часто появляющегося, когда сварке подлежат тонкие металлические листы. Режим, предполагающий применение переменного тока, применяют исключительно редко, поскольку производительность прохождения процесса резко снижается.

При сварке ручным методом выбор режима, в частности, заключен в том, что имеется возможность устанавливать разную полярность, подключая соединение и электрод к разным клеммам, находящимся на лицевой стороне аппарата. Обратная полярность при сварке — это следующий способ подключения — электрод к клемме положительной, а детали — к клемме отрицательной. Такая раскладка определяет понятие, что значит обратная полярность при сварке.

Прямой вариант означает противоположное включение. Тогда интенсивнее электрода начинают плавиться детали соединения, что является преимуществом при сварке толстых элементов конструкции. Эти явления соответствуют законам физики по термодинамике. Электрическая дуга, представляющая собой поток электронов и ионов, служит источником тепла.

Три составные части дуги: столб, область анодная и область катодная. При горении дуги происходит образование активных пятен. То из них, которое находится на аноде, именуется анодным пятном, а на катоде — катодным.

Столб — это плазма, разогретая до сверхвысокой температуры. Энергия тепла в дуге выделяется неравномерным образом. Электроны, достигшие анода, отдают ему собственную энергию. На этом месте появляется анодное пятно, разогретое в значительной степени. Ионы с положительным зарядом двигаются в сторону катода. Достигнув его, они отдают собственную энергию и образуют там катодное пятно. Поскольку электронов, как правило, больше, то анод является более разогретым, чем катод.

Полярность при сварке постоянным током имеет два варианта. Это находится в зависимости от способов подключения. Они являются противоположными. Для получения прямого вида к изделию подсоединят «плюс», а к стержню с обмазкой — «минус». Для получения обратной делают все противоположным способом.

Если процесс происходит с неизменным током при установке прямого варианта, электрод начинает нагреваться медленнее, чем свариваемый металл. Получаемый сварной шов имеет более глубокую величину проплавки. Помимо этого, горение дуги является более устойчивым. Обратный вариант полярности имеет смысл применять, если слишком большое выделение теплоты ухудшает качество шва. Такая ситуация возможна, когда сварке подлежат материалы, не слишком хорошо переносящие перегрев — высокоуглеродистые, легированные стали, некоторые цветные металлы. Также, если сварке подлежат тонкие листы.

При распространенном виде процесса — дуговой сварке, существенную роль играют различные параметры, такие как выбранный диаметр электрода, его тип и марка, напряжение на сварной дуге, скорость сварного процесса, положение шва. Одним из самых важных параметров является полярность сварки.

Род тока, который применяется в дуговой сварке, делится на два вида. Сварку дуговым способом на переменном токе осуществляют, когда предстоит совместить детали, выполненные из низколегированной стали. При этом желательно использование электродов, имеющих рутиловое покрытие. Сварку постоянным током можно осуществлять двумя способами — прямым и обратным.

Прямой вариант используют, когда предстоит сварка чугунных изделий или требуется глубокий проплав металла. Обратный вариант применяется, когда требуется сварить нетолстые листы, а сварка происходит с усиленной скоростью расплавки электрода, и еще для сваривания низкоуглеродистой стали.

Полярность влияет на внешний вид шва — его габариты и конфигурацию. При сварке постоянным током обратной полярности величина, которая означает глубину проплавки, почти в два раза значительнее, чем прямой.

Отличия режимов при сварке

Сварка прямой и обратной полярности обладает существенными различиями. Прямая полярность при сварке обладает нюансами, которые рекомендуется принимать к сведению:

  • значительную глубину;
  • небольшую ширину шва;
  • такие подключения осуществляются для сварки металлических изделий из металла, имеющих толщину не менее трех миллиметров;
  • вольфрамовые стержни используют для деталей, изготовленных из цветных металлов;
  • стабильность горения дуги;
  • быстрая расплавка электродов;
  • разбрызгивание увеличивает расход электродов.

Обратный вариант применяют тогда, когда предполагается уменьшить риск появления серьезных дефектов, приводящих к отбраковке. Такой вид также имеет смысл применять, когда сварке подлежат детали, предназначенные для ответственных конструкций. Чтобы предотвратить коробление при значительном нагревании обратный вариант применяют для сварки тонких листов.

Также имеет смысл ее использовать, когда сварке подлежат две стальные детали, обладающие разной степенью легированности. Подобные соединения обладают повышенной чувствительностью к лишнему перегреванию. Обратный способ используют, когда сварка происходит под защитой инертными газами.

Обратная полярность при сварке обладает в свою очередь такими особенностями:

  • обратная полярность при сварке постоянным током создает соединение не чересчур глубоким, но зато широким;
  • качество будет не таким высоким, если использовать обратный способ при сварке не тонких деталей;
  • при обратном варианте нельзя применять виды стержней, обладающих повышенной чувствительностью к перегреванию;
  • при снижении силы тока могут возникнуть скачки дуги и, соответственно, снижение прочности соединения.

При подключении аппарата к обычной сети, обеспечивающей ток переменного значения, надо использовать стержни с рутиловой оболочкой вследствие отсутствия у них зависимость от полярности. В этом случае допустимо применение любого варианта.

Что влияет на выбор

Прямая или обратная полярность при сварке выбирается сварщиком в первую очередь в зависимости от поперечных габаритов металла, подлежащего сварке. Когда она является значительной, массу на приборе следует подключать к плюсовой клемме, а электрод — к минусовой. Значительная температура на толстых элементах основательно прогреет металл в рабочей зоне. Это будет способствовать более глубокой величины провара. Сварной шов получится прочным и качественным.

Оправдывать себя будет обратная полярность при сварке тонкостенных металлических изделий. Это объясняется тем, что анодное пятно образуется на электроде, что устраняет угрозу пережога тонких деталей конструкции.

Прямая или обратная полярность в сварке выбираются также в зависимости от вида и типа металла, из которого изготовлены детали будущей конструкции. К примеру, полярность при сварке нержавейки или чугуна для получения надежного соединения должна быть обратной. Такой выбор обусловлен тем, что при этом не происходит перегрева деталей и не происходит образования тугоплавкого шва, которое потребует в дальнейшем особую обработку.

Прямая полярность при сварке применяется, когда предстоит соединять детали из алюминия. При этом пленка, которая покрывает цветной металл, от сильного нагревания расплавляется, и не является больше препятствием для образования правильного шва.

Один из критериев выбора режима — металл, применяемый в качестве покрытия стержня. Электроды, имеющие угольное покрытие, при использовании обратного варианта нагреваются быстро и разрушаются также быстро. Проволока, в которой покрытие отсутствует, хорошо себя проявляет при прямом способе.

Методика сварки должна быть описана в сопроводительной документации на соединение. Также имеются справочники, в которых содержатся необходимые сведения. Опытные сварщики могут руководствоваться своей практикой, чтобы сделать грамотный выбор полярности.

Влияние полярности на сварку

Полярность тока оказывает влияние на такие важные факторы, как глубина проплавления, качество сварного соединения и химический состав получившегося шва. Что сделать правильную установку надо четко понимать, что такое сварка током обратной полярности и что такое сварка током прямой полярности.

Термическими нюансами варианта с обратной установкой являются то, что после того, как произошло зажигание дуги, начинается появление анодного и катодного пятен. Разница температур у них является вполне впечатляющей — до 800°С. Выше температура у анодного пятна. Такое значительное количества тепла является положительным моментом для процесса, основанного на расплавления материалов с целью их дальнейшего соединения. Таким образом, обратная сварка по определению обеспечивает получение лучшего сварного шва.

При сварке с помощью постоянного тока в режиме прямой полярности металл электрода имеет скорость сгорания на 20-40% выше, чем в режиме обратной, что является недостатком метода. При работе с переменным током установка полярности никакой роли не играет. От подключения полюсов зависит форма и размеры сварного шва, что является немаловажным обстоятельством.

Достоинства и недостатки двух методик

Разные виды подключения оказывают различное влияние на процесс сварки. Нюансами сварки обратным током являются:

  • тепловая энергия поступает в большем количестве на изделие, чем на стержень с обмазкой;
  • существенный разогрев гарантирует глубокую проплавку, что является важным для получения качественного шва;
  • плавление электрода происходит в медленном темпе, что не требует его частой замены;
  • значительно снижается степень разбрызгивания металла и возникновения дефектов вследствие этого.

Прямая полярность тока при сварке имеет следующие нюансы:

  • заготовленные для сваривания детали нагреваются минимально;
  • электрод быстро плавится, что приводит к необходимости его частой замены;
  • происходит значительное разбрызгивание раскаленного металла.

Из сравнения видно, что обратная сварка обладает большим количеством преимуществ. Однако большинство производителей электродов дают свои рекомендации по применению конкретных видов этих изделий и указывают их на этикетке или в сопроводительной документации на товар.

Сварка полуавтоматом

Такой вид осуществления сварочного процесса является очень популярным и имеет много достоинств. Правильно выбранная полярность при сварке полуавтоматом позволяет выполнить этот процесс наилучшим образом. Так, например, в случае, когда сварке подлежат детали, изготовленные из нержавеющей стали и при этом применяется защитный газ, следует выбирать обратное подключение. Когда сварке подлежат алюминиевые детали и используется порошковая присадочная проволока, то использовать целесообразнее прямое подключение.

При полуавтоматической сварке происходят некоторые изменения. Держак с электродом подключают на плюс, и массу на минус. Так делают для того, чтобы применяемый для этого способа флюс полностью выгорел. Тогда сварочный процесс происходит внутри газообразного облака. Металл меньше разогревается, а разбрызгивание раскаленного металла станет минимальным.

Сварка инвертором

Инвертор — это устройство, пришедшее на смену широко применяемым ранее трансформаторам. Он обладает меньшим весом и компактностью. Еще одно преимущество перед трансформаторами — меньшее разбрызгивание раскаленного металла. Вся потребляемая инвертором электроэнергия расходуется только на функционирование сварной дуги.

Инвертор представляет собой прибор, обладающий определенными характеристиками, которые позволяют осуществлять с его помощью работы по сварке с применением различных технологий. Помимо всех основных характеристик, присущим обычным трансформаторам, инверторы обладают дополнительными, которые делают использование этого прибора более удобным и значительно расширяет их технические возможности. Инверторы могут применяться в промышленности и при сварочных работах в домашних условиях.

В комплект инвертора входят два кабеля. Первый их них заканчивается держателем, предназначенным для электрода. Второй — зажимом в форме прищепки для закрепления на детали. Одно из основных преимуществ — возможность установки при сварке инвертором прямой и обратной полярности.

Инвертор, по сути, представляет собой прибор, преобразующий переменный ток из розетки в ток постоянный. Конструкция устройства предполагает наличие металлического корпуса, на котором для осуществления охлаждения установлены вентиляционные решетки. Для удобства при переноске прибор имеет наплечный ремень, обладающий регулировкой по размеру. Для подключения кабеля имеются стандартные разъемы. Один из них служит плюсом, а второй — минусом.

На лицевой стороне находится защита от перегрева — специальный индикатор, который срабатывает при превышении установленной температуры. С помощью маховика осуществляется плавная регулировка сварочного тока в диапазоне 10-180 В.

Как происходит сварка инвертором

Основой инверторной сварки является классический принцип, заключающийся в том, что сваривание может осуществиться при наличии высокой температуры от появившейся сварной дуги.

От контакта электрода с поверхностью изделия образуется сварная дуга. Под влиянием высокой разогретости стержень с обмазкой и часть детали, находящаяся в процессе, плавятся, следствием чего является образование сварочной ванны. Часть обмазки электрода переходит в газообразное состояние, защищающего ванну от вредоносного действия кислорода. Жидкая составляющая расплавленной обмазки располагается поверх металла, находящегося в жидком состоянии, защищая его.

Остывая, жидкая обмазка образует шлак, который находится снаружи шва. Его удаляют постукиванием молотка. Важным обстоятельством для получения хорошего шва является непрерывность горения дуги. Для этого необходимо следить за постоянством длины дуги, то есть расстоянием между деталью и электродом. Это обеспечивается одинаковой скоростью, с которой электрод подается в зону сваривания. Следует стараться электрод вдоль наплавленного валика вести ровно, не отклоняясь.

Для того, чтобы при сваривании при помощи инвертора появилась дуга между электродом и деталью их металла, их необходимо подключить к разным полюсам. Разница в режимах состоит в том, куда будет подключен электрод на минус или на плюс. Правильный выбор зависит, в частности, от толщины свариваемых деталей и других факторов.

Прямую и обратную полярность при сварке постоянным током иначе называют «электрод-отрицательной» и «электрод-положительной». Такие названия более понятны и отражают варианты подключения электрода к плюсу или к минусу. Таким образом, существует правило — при прямой или иначе «электрод-отрицательной» полярности электрод подключен к минусу, а при обратной или иначе «электрод-положительной» полярности электрод подключен к плюсу.

Каждый сварочный аппарат имеет гнезда, в которые подключают кабель от держателей, функцией которых является зажим электродов. Их также иначе называют массой.

Сварка масса плюс или минус означает, что куда цеплять массу при сварке, то есть, — к какому полюсу будет подключен кабель от держателя с закрепленным в нем электродом, такая и будет получена полярность. Для получения прямой полярности кабель держателя следует подключать к положительной клемме, а для получения обратной полярности кабель держака с электродом подключают к отрицательной клемме.

Держак инвертора

При установке плюса или минуса при сварке держак следует подобрать правильно и держать его удобным способом. Чтобы имелась возможность свободно манипулировать рукой для управления инвертором при сварке, рекомендуется правильно размещать держак, в котором закрепляется электрод.

Существует несколько видов держаков:

  1. Прищепка. Это самый распространенный, удобный и дешевый вариант. В зависимости от конструкции она бывает пружинной и рычажной.
  2. Вилка-трезубец. В ней можно удерживать электрод любого диаметра. Такое устройство можно изготовить самостоятельно.
  3. Цанга. Зажимает крепко, имеет большой срок службы. Находит применение при сварке конструкций, имеющих повышенную значимость.
  4. Держатель безогарковый. Металлический штырь 1 вмонтирован в цилиндрическую рукоятку 2. Фиксация электрода обеспечивается его привариванием к штырю.
  5. Винтовой. Имеет много достоинств: обеспечивают бесперебойную подачу тока, обладают хорошим контактом, имеют возможность хорошего закрепления электродов.

При сварке с помощью инвертора рекомендуется кабель держака обернуть вокруг части руки, расположенной между локтем и кистью. После этого взять держак в руку. Тянуть кабель сможет предплечье, а кисть руки остается свободной. Это поможет свободному манипулированию рукой при осуществлении сварочного процесса.

Выбор инвертора и его эксплуатация

Прямое и обратное подключение сварочного инвертора является функцией любого агрегата этого типа. Кроме этого аппарат должен обладать дополнительными свойствами:

  • антиприлипание;
  • горячий старт;
  • возможность работы с постоянным и переменным током;
  • работа в помещении с повышенной влажностью;
  • защита от перегрева;
  • индикация в цифровом виде.

Помимо этого следует тщательно подойти к грамотному выбору электродов для конкретного вида сварочного соединения. При покупке нет смысла интересоваться у продавца или искать в сопроводительной документации ответ на вопрос «Можно ли менять полярность на сварочном инверторе?». Такой функцией обладают все имеющиеся модели инверторов.

Для нормального функционирования прибора надо перед началом сварочных манипуляций производить его осмотр. При выявлении повреждений таких защитных элементов, как изоляция кабелей или шнуров от сети, следует произвести их замену. Проверка включает отсутствие значительных механических изменений корпуса инвертора, которые могли бы повлиять на нормальный ход работы.

Необходимо также провести внутреннюю чистку аппарата. Для этого придется снять кожух, чтобы получить доступ к внутренним узлам. Чтобы не навредить содержимому, чистку от пыли и грязи следует проводить струей сжатого воздуха. Отдельно проводится контроль состояния клемм, подключение к которым определяет полярность при сварке инвертором. При обнаружении на них окисления его удаляют наждачной бумагой мелкой зернистости.

Перед началом процесса сварки необходимо произвести подготовительные работы. В их число входит очистка и обезжиривание деталей, подлежащих соединению. Затем необходимо выставить на аппарате необходимые режимы. В частности, необходимо проанализировать, какая полярность подключения сварочного инвертора подойдет для осуществления конкретного вида сварки. Выяснив, какая полярность при сварке инвертором будет наиболее целесообразна, надо соответствующим образом установить кабели в предназначенные для этого клеммы, поскольку полярность сварки инвертором обеспечивается именно этим подключением.

Работа с применением инвертора на постоянном токе возможна только при двух вариантах настройки, которые регулируют направление, в котором будет двигаться электроны.

Прямая полярность при сварке инвертором предполагает, что подключение «минуса» произошло к электроду, а «плюса» — к металлической детали. Такой режим необходим для увеличения глубины сварного шва при соединении заготовок, обладающих большой шириной.

Обратная полярность при сварке инвертором означает, что электрод при выставлении необходимого режима был подключен к «плюсу», а металлическая деталь, соответственно, к «минусу».

Если во время рабочей смены ставится задача сваривания разных соединений, то для того, чтобы изменить режим достаточно поменять подключение к необходимым клеммам, что является не просто простым действием, а очень простым, осуществляемым вручную. Сварка инвертором обратной полярностью применяется значительно чаще, чем прямой. Это позволяет получить сварные шва необходимой глубины, толщины, конфигурации.

Грамотно выбранная полярность на сварочном инверторе зависит от следующих обстоятельств:

  1. Толщина деталей. При подсоединении, обеспечивающем прямую полярность, деталям достается основной нагрев. Ширина шва получается довольно глубокой. Для тонких деталей это не годится, поскольку может образоваться дефект в виде прожига, который не всегда можно ликвидировать. Поэтому для сварки тонких листов целесообразно применять обратный вариант.
  2. Вид материала свариваемых деталей. При сварочных работах приходится иметь дело с различными металлами и сплавами, которые обладают разными свойствами. К примеру, к среднеплавким металлам относится часто применяемый в конструкциях алюминий. Ему подойдет прямое включение. Перегревать нержавеющую сталь не стоит, поэтому для нее выбирают обратное подключение. Предварительный анализ и справочники помогут эффективно подойти к этому вопросу.
  3. Тип электрода. Все электроды имеют покрытие, которое при сгорании вытесняет воздух, препятствуя возникновению такого дефекта, как поры. При выборе режима необходимо учитывать совместимость режима с видом покрытия. Например, если применяют при сварке электроды с угольным покрытием, то обратная сварка не является подходящим вариантом.

Сложным случаем является, когда электрод и заготовки обладают характеристиками, которые требуют противоположных настроек. Тогда выбор полярности сварки — обратной или прямой потребует компромиссного решения. В качестве дополнительных мер принимается регулировка тока и скорости сварочного процесса. Такое решение под силу сварщикам, обладающим большими навыками, а начинающим работникам следует с ними посоветоваться. Выбор режима должен быть указан в технологической карте на производственный процесс.

Выбор электродов

При выборе электродов, предназначенных для сварки с помощью инвертора, необходимо иметь в виду, что на него будет оказывать влияние марка и вид материала, из которого изготовлены детали изделия. Особенности выбора электродов для сварки также зависят от многих факторов, таких как: какой вид тока будет использоваться при сварке — постоянный или переменный, пространственное положение сварных швов, предполагаемая скорость сварки, количество слоев шва.

К критериям выбора электродов относится то, какой должен быть вид стержня — плавящийся или неплавящийся. Плавящиеся представляют собой стержни со специальной обмазкой, назначением которой является создание зоны защиты и повышения стабильности горения дуги. Такой вид находит применение при дуговой сварке. Неплавящиеся электроды используются при сварках под защитным газом, в частности аргоном.

На выбор электродов также оказывает влияние режим полярности. Полярность электродов подразумевает, к какой клемме следует подключить стержень с обмазкой, чтобы был осуществлен выбранный режим. Электроды при обратной полярности подсоединяют к клемме, имеющей обозначение «плюс».

Современные популярные марки электродов из существующего их рейтинга обладают при применении совместно с инвертором такими преимуществами:

  • простота выполнения производственного процесса сварки;
  • получение хорошего шва соединения различных форм и размеров;
  • отделяемость образовавшегося шлака, не составляющая большого труда;
  • возможность сваривать даже детали с коррозией;
  • безопасность для сварщика.

Выбор диаметра зависит от толщины элементов изделия, подлежащих сварке. При этом существует прямая зависимость. Чем более толстые детали, тем больший диаметр электродов следует выбирать для сварки деталей конструкции. Электроды совсем маленького диаметра используют для закрепления прихваток — небольших поперечных швов для фиксации соединяемых деталей.

Покрытия стержня электрода могут носить разный характер. Они условно разделены на 4 категории. Первая из них так и называется — основной и является наиболее распространенной. Такой вариант выбирают при желании получить соединение, обладающее высоким качеством, механической прочностью, пластичностью, устойчивостью к образованию трещин. Вариант вполне годится для ответственных конструкций и в дальнейшем использовании соединения в суровых климатических условиях.

Наиболее популярной маркой электродов с рутиновым покрытием является МР-3. Они обладают многими преимуществами:

  • успешно используются для соединения деталей из низкоуглеродистой стали;
  • обеспечивают качественное соединение, как при переменном, так и при постоянном токе;
  • при выполнении сварки инвертором происходит небольшое разбрызгивание раскаленного металла;
  • применимы для выполнения швов любого пространственного положения;
  • хороший внешний вид получаемого шва.

Две другие категории находят применение реже при определенных условиях сварочного процесса.

Обучение специалистов сварных работ

Работа сварщика является престижной и обладающей постоянной востребованностью. Но, для того, чтобы стать официально оформленным специалистом, необходимо получить образование в этой области. Это будет служить гарантией для работодателя, что сварные работы будут проведены грамотно, с соблюдением современных технологий и наименьшим процентом отхода в брак.

Поскольку развитие технологий сварки и выпуск нового оборудования происходят стремительно, то даже людям, имеющим большие практические навыки в этой области необходимо периодически проходить обучение, чтобы быть в курсе происходящих перемен и усовершенствований.

Обучению подлежат не только простые исполнители-сварщики, но и руководители работ — инженеры и технологи. Высший состав может закрепить свой статус при окончании профильных факультетов колледжей и институтов, а сварщикам достаточно окончить специализированные курсы.

После окончания курсов и успешного прохождения экзаменов учащемуся выдается удостоверение об окончании и присвоении ему соответствующего разряда. Такой документ является пропуском для получения денежной и интересной работы.

Программа занятий на курсах делится на две части — теоретическую и практическую. Первую из них ведут в специально отведенных для этого аудиториях лекторы, имеющие профильное образование и педагогический стаж.

Программа курса включает различные вопросы, в том числе соответствующие теме нашей статьи:

  • полярность электродов при сварке;
  • что такое обратная полярность при сварке;
  • что такое обратная полярность при сварке инвертором;
  • что это — обратная полярность при сварке постоянным током;
  • обратная полярность при сварке постоянным током — что это такое;
  • ток обратной полярности при сварке.

Разумеется, этим не исчерпывается полный список изучаемых предметов.

Практические занятия позволяют применить полученные знания в деле. На них обязательно должен присутствовать мастер, следящий за правильным ходом выполнения работ и отвечающий на возникшие вопросы.

За дополнительные деньги можно приобрести курс индивидуального обучения, но групповые занятия имеет свои преимущества. Рекомендуется прислушиваться к разбору совершенных ошибок других участников занятий. Это позволит приобрести дополнительную информацию о правильном выполнении различных методов сварки.

После окончания прохождения программы наступает очередь доказать свои знания и показать умение приемной комиссии на выпускном экзамене. При положительной оценке, выставленной комиссией, учащемуся выдают удостоверение узаконенного образца.

В удостоверении указывается наименование учебного центра, который его выдал. Указываются практические действия по сварке, проведенные экзаменуемым. Проставляется оценка за демонстрацию теоретических основ по сварке. Необходимо следить, что внизу имелись подписи председателя и членов экзаменационной комиссии. После этого новоиспеченный сварщик ставит свою подпись.

При окончании курсов можно получить конкретную специализацию, например, «Сварщик электродуговой сварки», «Газосварщик», «Сварщик-вышкомонтажник». В последнее время особо престижной является профессия «Сварщик-аргонщик». Она дает право работать на сварке под защитой газа-аргона, что дает большие преимущества перед другими способами.

Сварщикам, мастерам, инженерам, технологам и руководителям работ, желающим иметь доступ к контролю соединений на особо ответственных конструкциях, имеется возможность получить дополнительное образование, закончив курсы НАКС. Это значительно повысит их конкурентоспособность.

Интересное видео

Полярность аккумулятора — что означает и как правильно определить полярность?

Полярность – расположение на крышке аккумулятора присоединительных клемм, которые являются токовыводящими элементами. Так как полюса всего два – положительный и отрицательный, то и вариантов расположения их немного – прямое и обратное. Мы рассмотрим по отношению к чему принято определять расположение клемм, что будет если случайно перепутать полюса, когда специально делается переполюсовка.

Что означает прямая и обратная полярность аккумулятора

Расположение клемм на аккумуляторе происходит всегда в определенной последовательности, по стандарту стран производителей. Клеммы всего две, плюс и минус. Они могут иметь разное положение, но наиболее удобным для обслуживания оказалось вынести клеммы на крышку. При этом они бывают поднятыми или утопленными, отличая европейский и азиатский тип.

Клеммы удобно располагать на крышке с двух сторон. Прямая и обратная полярность отличают аккумуляторы только переменой места полюсов. Если прямым считают положение, когда ты читаешь надписи на лицевой стороне, а правая рука касается правой плюсовой кнопки. Обратное положение- та же рука касается отрицательной кнопки.

Это важно учитывать, покупая аккумулятор взамен старого. Подключать клеммы наоборот будет неудобно, придется наращивать один провод, укорачивать другой.

Как определить – полярность аккумулятора прямая или обратная

У каждого аккумулятора есть лицевая сторона, снабженная маркетинговыми и информационными наклейками. Если поставить аккумулятор лицом к себе, клеммы располагаются по правую и левую руку.

«Прямая» полярность в маркировке иногда отмечается цифрой 1. Это российская компоновка аккумуляторов. Если аккумулятор стоит лицом, плюсовая кнопка под левой рукой, красная или с рифленым плюсом. Правая — отрицательная

«Обратная» полярность в классификациях отмечается цифрой «0». Чтобы определиться, нужно поставить аккумулятор лицом к себе. Левая рука ляжет на отрицательную клемму, а правая – на положительную.

Прямая и обратная полярность обозначают различие во внутренней схеме контактов банок на ту или другую сторону. Практически это значит, при замене аккумулятора владелец может перепутать полюса при подключении к шинам авто.

Разница между прямой и обратной полярностью аккумулятора

Ничем другим, кроме расположения полюсов, прямые и обратные схемы соединения банок в батарею не отличаются. Но при установке в гнездо не того аккумулятора могут возникнуть проблемы. Их будет еще больше, если не подойдут провода или перепутаете полярность.

Полярность грузовых аккумуляторов

Конечно, лучше поставить аккумулятор правильной полярности, но места под капотом больше, провода длиннее, поэтому правильно подсоединить можно любой аккумулятор. Важно не перепутать полюса при сборке схемы. В связи с тем что аккумуляторы для грузовиков габаритнее, вариантов подсоединения в них больше — полюса располагаются по вертикали, горизонтали и диагонали, меняясь местами.

 Как определить полярность аккумулятора

На грузовых авто установлены емкие и тяжелые аккумуляторы. У них точно также как определяется прямая и обратная полярность. Справа положительный полюс – прямая полярность, отрицательный – обратная. Только смотреть нужно не с лица, а со стороны, где ближе выводы. И обратная полярность в грузовом авто маркируется цифрой «3», а прямая цифрой «4». Если контакты расположились по диагонали – они маркируются цифрой «2». Есть еще виды расположения полюсов с маркировкой «9» и «6»

Что означает обратная полярность аккумулятора

Обратная полярность значит предусмотрена вариативность посадкиотносительное расположение полюсов аккумуляторов даже у одного производителя может быть прямым и обратным. Это позволяет эффективнее использовать подкапотное пространство, делая удобную компоновку. Тем важнее выбрать точно такой же аккумулятор. Если полярность обратная, независимо, в грузовой или легковой машине, катод будет всегда находиться под правой рукой, при условии, что аккумулятор стоит правильно.

Смена полярности аккумулятора

Смена полярности аккумулятора может произойти случайно или преднамеренно. Если вы перепутали клеммы при прикуривании – материальные издержки как донору, так и акцептору обеспечены.

Если случайно произвели смену полярности в своем авто, то в лучшем случае сгорит главный предохранитель, в худшем – диодный мост. Чем быстрее заметили косяк – тем меньше потери.

Смена полярности, как переполюсовка применяется для возвращения работоспособности сульфатированному АКБ. Аккумулятор с аппетитом ест сульфат свинца, очищая пластины. Но переполюсовка – работа аккумулятора вопреки правилам. Вынужденная мера должна быть временной. Гораздо лучше использовать при десульфатации двойную смену полярности.

Видео

Полярность прямая, обратная – вроде бы ясно все. Но случаются эксцессы. Предлагаем видео по теме.

 

Что такое полярность аккумулятора и как ее определить

Автомобильные аккумуляторы рассчитаны на напряжение – 12 В и постоянный ток. Они подключаются с помощью клемм, одна из которых имеет плюсовой заряд, а другая – минусовой. Плюс подключается к электрической система авто, а минус соединяют с кузовом (массой). Полярность – это взаимное размещение клемм. Неправильное подключение АКБ грозит поломкой электрооборудования. Но проблема в том, что выводы на разных батареях и расположены может быть по-разному.

Разница между прямой и обратной полярностью

Различают следующие виды полярности аккумуляторов:

  • прямая – используется в РФ,
  • обратная – обратная полярность аккумулятора характерна для машин европейской сборки, причём авто, собираемые в странах СНГ, чаще комплектуются прямополярными АКБ.

По компоновке элементов различают четыре типа полярности: по 2 вида для грузовиков и легковушек, хотя встречаются и ещё несколько, менее распространённых.

Аккумулятор прямой полярности отличается от АКБ обратной полярности размещением токовыводов. Но различий в принципе работы нет. Технические характеристики могут быть совершенно идентичными.

Есть ещё модели азиатского типа и американского. В некоторых источниках они указываются как дополнительные виды. Однако это неверно, потому что различия относятся к типоразмеру. АКБ азиатского производства больше высоту, но меньше в ширину. Кроме того, клеммы у таких приборов тоньше. Аккумуляторы американского производства чаще имеют выводы на боковой стороне, которые сделаны под крепление болтом. Причём азиатские модели относятся к обратнополярным, а американские – к прямополярным.

Подробнее разобраться, что такое обратная и прямая полярность автомобильного аккумулятора, поможет анализ разных вариантов АКБ.

Как определить полярность аккумулятора

Способ определения будет частично отличаться для легковых и грузовых автомобилей.

Легковые автомобили

Чтобы определить, какая полярность аккумулятора – прямая или обратная, нужно развернуть прибор выводящими элементами к себе, этикетка будет располагаться перед глазами. Прямополярной считается батарея, если слева направо размещён сначала «+», потом «–». Такие аккумуляторы маркируются цифрой «1» и устанавливают преимущественно на отечественные авто и на отдельные машины зарубежного производства.

У обратнополярных АКБ все наоборот: сначала идёт «минус», затем «плюс». Такая батарея маркируется цифрой «0». Но, несмотря на разницу, не понять, какая полярность у аккумулятора, можно только по незнанию или в спешке.

Грузовые автомобили

Чтобы узнать полярность аккумулятора для грузовой машины, нужно посмотреть на клеммы, развернув прибор этой стороной к себе. Выводы часто расположены на короткой стороне. Если плюсовой вывод находится слева, а минусовой – справа, то это обратнополярная АКБ, и она обозначается цифрой «3».

Минус, размещающийся справа, и плюс слева определяют прямополярный аккумулятор для грузового автомобиля, который обозначается цифрой «4».

В редких случаях встречаются ещё другие варианты компоновки батареи:

  • «2» – выводы расположены по диагонали.
  • «6» – стороны батареи одинаковые ширины, и выводы расположены с одной стороны, слева направо «-», затем «+».
  • «9» – токовыводящие элементы размещены по центру коротких сторон.

Дополнительные способы определения полярности

Определение полярности аккумулятора возможно и по внешнему виду отдельных элементов. У прямополярной АКБ:

  • плюсовая клемма больше минусовой,
  • клеммные выводы в целом толще.

Толщина клемм (мм.)

Прямополярный Обратнополярный
Плюс 19,5 12,7
Минус 17,9 11,1

Затруднений с определением не должно возникать ещё и по той причине, что производитель выбивает на корпусе рядом с клеммами или непосредственно на клеммах «+» и «–».

Кроме того, маркируются цветами, соответственно, «+» – красный, «–» – синий или чёрный:

  • защитные колпачки на клеммных проводах,
  • наклеммные колпачки.

На сам аккумулятор может быть нанесена маркировка в виде букв «L» или «R». Первая указывает на обратную полярность, вторая – на прямую.

Обратите внимание! В случае затруднений производители предлагают воспользоваться онлайн каталогом для подбора оптимальной модели аккумулятора.

Если никаких обозначений на аккумуляторе нет, то полярность определяют с помощью:

  • мультиметра – в режиме измерения постоянного напряжения тока (U) чёрный щуп подсоединяют к предполагаемому минусу, а красный – к плюсу. Если проверяющий угадал расположение полюсов, то прибор покажет напряжение «12 В». Если полярность не совпала, то напряжение будет « -12 В»,
  • слабого раствора кислоты, например, лимонной. К выводам аккумулятора нужно подсоединить медные провода, одним концом прикрутить по одному проводу к выводам, а другим опустить их в раствор. Важно, чтобы провода не соприкасались. Там, где будет минусовой провод, образуются пузырьки воздуха,
  • сырого картофеля. Также используются медные провода, только их нужно воткнуть в разрезанную пополам картофелину на расстоянии 5-10 мм друг от друга. Там, где «+», картофель позеленеет,
  • осмотра клемм. Кроме того, что плюсовой вывод толще, чем минусовой, у б/у АКБ есть ещё одно отличие – плюсовая клемма имеет белый или зелёный налёт – оксидное загрязнение.

Что будет, если перепутать полярность

Чаще путаница происходит при подзарядке АКБ, но неопытные водители неправильно подключают аккумулятор и к бортовой сети. При этом наблюдается искрение, и все элементы подвергаются серьёзной опасности. Перегоревший предохранитель – самое малое, чем грозит ошибка. Сначала проверяют все предохранители, начиная с распределительных элементов под капотом. Перегоревшие заменяют, подбирая по амперажу.

Вот что будет, если перепутать полярность аккумулятора. Наряду с перегоревшим предохранителем, возможно повреждение:

  • подсветки и электроники приборной панели,
  • сигнализации,
  • проводов,
  • бортового компьютера – электроника очень чувствительна к смене полярности, и если двигатель начинает вращаться в обратном направлении, то электроника выходит из строя,
  • АКБ,
  • блока управления двигателем – мотор перестаёт заводиться либо осложняется управление. В блоке управления может быть установлена защита – так называемый стабилитрон. Его параллельно подключают к питающей шине. Если он пробит и нет запасной детали, можно выполнить подключение напрямую, убрав стабилитрон,
  • генератора – из строя выходят 1 и 2 диод выпрямительного моста. пробой образуется из-за того, что через соединение проходит максимальный ток и он возрастает, поскольку сопротивление диодов нулевое. В результате растёт вероятность воспламенения проводки и повреждения других элементов бортовой сети.

После замены предохранителей необходимо проверить исправность генератора. Двигатель заводят и дают ему проработать на холостых оборотах 10-15 минут, затем определяют температуру генератора. Если он перегрелся, значит, вышел из строя диодный мост. После того, проверяют остальные элементы электрической системы.

Диодный мостик генератора

Важно! Особенно фатальна ошибка на машинах японского производства.

Однако перепутать прямую или обратную полярность АКБ сложно, и вот по каким причинам:

  • зафиксировать минусовой провод на плюсовом выводе не получается, потому что он слишком толстый,
  • плюсовой провод слишком короткий.

Однако некоторым всё-таки удается поставить аккумулятор неправильно. Первый сигнал при этом – сильное искрение, что свидетельствует о коротком замыкании в цепи.

Гораздо чаще путают полярность при зарядке аккумулятора. Если оплошность была замечена сразу, нужно проверить работоспособность АКБ и подключить зарядку правильно. Если же аккумулятор успел зарядиться и работает, устанавливать его на автомобиль нельзя, потому что его полярность изменилась. Чтобы избежать поломки бортовой системы автомобиля, необходимо полностью разрядить аккумулятор, а потом зарядить его правильно.

Можно ли установить другой полярности

Автомобилистов, которые по неопытности приобрели неподходящий аккумулятор, интересует можно ли как-то поставить его в автомобиль. Теоретически можно. Естественно просто подключить аккумулятор как обычно не получится. Придётся перевернуть АКБ и тянуть провод к соответствующему выводу. Провод иногда коротковат, поэтому его нужно будет наращивать. Кое-как к этому делу не подойти, поскольку нужно тщательно подобрать провод, рассчитав необходимое сечение. И такое подключение уже будет халтурой. Вместо рискованного мероприятия по подключению аккумулятора с неправильной полярностью, опытные водители рекомендуют продать прибор и купить тот, который нужно.

Чтобы избежать неправильного подключения АКБ, опытные водители советуют новичкам покупать точно такой же аккумулятор, что и был установлен. Однако этот способ не спасает от неправильной установки на подзарядку, поэтому будьте внимательны при покупке и установке батареи.

Загрузка…

Полярность при дуговой сварке — прямая, обратная и переменная полярность

Дуговая сварка — это один из видов процесса сварки плавлением, при котором основные металлы плавятся под воздействием тепла для образования коалесценции. Необходимое тепло подается электрической дугой, образованной между положительным и отрицательным полюсами электрической цепи, встроенной в источник питания. Для сварочных работ один вывод делается из металла, а другой — из электрода, и, таким образом, дуга образует между ними во внешней цепи.Поскольку электроны всегда текут от отрицательного вывода к положительному выводу любой внешней цепи, в зависимости от выполненного соединения возможны два случая:

  1. Электрод подключен к отрицательной клемме источника питания; тогда как неблагородные металлы связаны с положительной клеммой.
  2. Недрагоценные металлы соединены с отрицательной клеммой источника питания; тогда как электрод подключен к положительной клемме.

Однако, если источник питания выдает переменный ток (AC), то оба условия возникают одно за другим в каждом цикле.Обычно источники питания для дуговой сварки могут обеспечивать ток постоянного или переменного тока. Некоторые современные источники питания также содержат средства для преобразования друг в друга (интегрированные с преобразователем переменного тока в постоянный), поэтому эти источники могут обеспечивать питание как переменного, так и постоянного тока. Следовательно, дуговая сварка может выполняться при любой из трех полярностей: тем не менее, каждый из них имеет определенные преимущества перед другими, как описано в следующих разделах.

Полярность указывает направление протекания тока (другими словами — электронов) между пластинами основания и электродом во внешней цепи.Помните, что направление тока считается противоположным потоку электронов.

  • Прямая полярность постоянного тока — возникает, когда электрод становится отрицательным, а опорные пластины — положительным. Таким образом, электроны текут от наконечника электрода к пластинам основания.
  • Обратная полярность постоянного тока — возникает, когда электрод сделан положительным, а опорные пластины — отрицательным. Таким образом, электроны текут от базовых пластин к электроду.
  • Полярность переменного тока — если источник питания выдает переменный ток, то в каждом цикле один за другим будут возникать два указанных выше случая.В одной половине цикла электрод будет отрицательным (поэтому опорные пластины будут положительными), а в следующей половине электрод будет положительным (поэтому опорная пластина будет отрицательной). Количество циклов в секунду зависит от частоты питания. Например, при питании 60 Гц каждую секунду происходит 60 циклов.

При источнике питания постоянного тока (DC), когда электрод соединен с положительной клеммой, а базовые пластины — с отрицательной клеммой, это называется положительным электродом постоянного тока (DCEP) или обратной полярностью постоянного тока (DCRP).Таким образом, электроны освобождаются от базовой пластины и текут к электроду через внешнюю цепь. Непрерывный поток лавины электронов в небольшом проходе производит дугу (источник тепла).

Электроны, выходящие из базовых пластин (отрицательная полярность), ускоряются из-за наличия разности потенциалов, и им позволяют ударять по электроду (положительная полярность) с очень высокой скоростью. При ударе кинетическая энергия электронов преобразуется в тепловую, что в конечном итоге приводит к высокому тепловыделению вблизи кончика электрода.Как правило, считается, что две трети (66%) всего тепла дуги генерируется электродом; в то время как только одна треть (33%) тепло генерируется на базовой плите. В результате электрод быстро плавится и скорость осаждения металла увеличивается (только для расходуемых электродов). С другой стороны, опорные плиты не сливаются должным образом из-за отсутствия достаточного количества тепла и, таким образом, возникают различные дефекты, такие как недостаточное слияние, отсутствие проникновения, высокой арматуры и т.д. Тем не менее, поток потока электронов от опорной пластины удаления масла, покрытия , частицы оксида или слой пыли, присутствующие на поверхности опорной пластины (называемые также очистки оксида действия).

Преимущества полярности DCEP при дуговой сварке

  • Лучшая очистка от дуги, меньшая вероятность дефектов включения.
  • Большой объем наплавки плавящегося электрода, более быстрая сварка.
  • Лучшая производительность при сварке тонких листов. Это снижает уровень деформации, остаточное напряжение, полную резку и т. Д.
  • Подходит для соединения металлов с низкой температурой плавления, таких как медь и алюминий.

Недостатки полярности DCEP при дуговой сварке

  • Более короткий срок службы неплавких электродов.
  • Более высокий уровень подкрепления, если скорость не отрегулирована должным образом.
  • Недостаточное плавление и неполное проплавление.
  • Не может сплавлять толстые пластины или металлы с высокой температурой плавления.

В отличие от DCEP, когда электрод соединен с отрицательной клеммой, а базовые пластины — с положительной клеммой, это называется отрицательным электродом постоянного тока (DCEN) или прямой полярностью постоянного тока (DCSP). Таким образом, электроны текут от электрода к пластинам основания.Следовательно, большее количество тепла формирует на базовой пластине, по сравнению с электродом, так что скорость осаждения металла уменьшается. Также устраняются различные дефекты, вызванные недостаточным сплавлением основного металла. Но DCEN не обладает очищающим действием, поэтому могут возникнуть дефекты включения, если опорные плиты не очистить должным образом перед сваркой. Плюсы и минусы полярности DCEN обсуждаются ниже.

Преимущества полярности DCEN при дуговой сварке

  • Может быть достигнуто достаточное сплавление основных металлов и, следовательно, надлежащее проплавление.
  • Меньшая вероятность включения вольфрама (при сварке TIG), а также низкое усиление.
  • Лучший выбор для сварки металлов с высокой температурой плавления, таких как титан, нержавеющая сталь и т. Д.
  • Толстые пластины также можно правильно соединить.

Недостатки полярности DCEN при дуговой сварке

  • Отсутствие действия по очистке от дуги, поэтому вероятность дефектов включения.
  • Высокий уровень искажений.
  • Образование высоких остаточных напряжений на свариваемых деталях.
  • Более широкая зона термического влияния (HAZ).
  • Более низкая производительность из-за более низкой производительности наплавки.
  • Не подходит для сварки тонких листов.

Полярность переменного тока дает преимущества как DCEN, так и DCEP; однако лишь в некоторой степени. При использовании источника переменного тока в половине цикла электрод становится отрицательным, а в следующей половине цикла электрод становится положительным. Этот цикл повторяется 50 или 60 раз в секунду в зависимости от частоты источника питания (50 Гц или 60 Гц). Некоторые источники питания также предусматривают возможность изменения этой частоты.

Преимущества полярности переменного тока при дуговой сварке

  • Умеренное очищающее действие дуги.
  • Совместим с большинством типов электродов (но не со всеми).
  • Лучшее проплавление и проплавление металла шва.
  • Подходит для листов различной толщины.

Полярность — один из решающих факторов, влияющих на качество сварных соединений. Перед сваркой сварщик должен выбрать соответствующую полярность в зависимости от требований, типа присадки, типа электрода и основного материала.В следующем списке показаны параметры, на которые обычно влияет полярность сварного шва. Подробнее читайте: Как полярность влияет на характеристики дуговой сварки?

Следует отметить, что выбор полярности сварки требует учета большого количества факторов; однако ниже рассматриваются лишь несколько основных факторов. Следует тщательно выбирать полярность для конкретного применения.

  • Если основным металлом является алюминий или магний, то DCEP — лучший вариант, поскольку он может разрушить оксидный слой (оксид алюминия — Al 2 O 3 ), присутствующий на поверхности пластины.Кроме того, температура плавления алюминия весьма мала (660ºC), так что высокое тепловыделение вблизи базовой пластины не требуется.
  • Если вы свариваете титан или нержавеющую сталь, то переменный ток — лучший вариант, так как он даст вам все желаемые преимущества. Здесь DCEN может увеличить зону HAZ.
  • Если рабочий материал имеет низкий коэффициент излучения электронов или требуется высокое напряжение для электронной эмиссии, то DCEP — неправильный выбор, так как это может привести к нестабильной дуге.
  • Если толщина опорной пластины является более (> 6 мм), то DCEN является предпочтительным выбором.Также требуется подготовка кромки. Точно так же для тонких пластин следует выбирать DCEP.
  • При сварке TIG использование полярности DCEP может привести к образованию шариков на конце электрода, что приведет к сокращению срока службы электрода. Это также может привести к дефекту включения вольфрама.

1 Сокращения для обозначения обратной полярности постоянного тока

Аббревиатура для обозначения обратной полярности постоянного тока

APA
Все сокращения.2020. Обратная полярность постоянного тока . Получено 9 ноября 2020 г. с https://www.allacronyms.com/direct_current_reverse_polarity/abbreviated
Chicago
All Acronyms. 2020. «Обратная полярность постоянного тока». https://www.allacronyms.com/direct_current_reverse_polarity/abbreviated (по состоянию на 9 ноября 2020 г.).
Harvard
Все сокращения. 2020. Direct Current Reverse Polarity , All Acronyms, просмотрено 9 ноября 2020 г.,
MLA
Все сокращения. «Обратная полярность постоянного тока» . 9 ноября 2020 г. Web. 9 ноября 2020 г.
AMA
Все сокращения. Обратная полярность постоянного тока. https://www.allacronyms.com/direct_current_reverse_polarity/abbreviated. Опубликовано 9 ноября 2020 г. Проверено 9 ноября 2020 г.
CSE
Все сокращения. Обратная полярность постоянного тока [Интернет]; 9 ноября 2020 г. [цитируется 9 ноября 2020 г.]. Доступно по адресу: https://www.allacronyms.com/direct_current_reverse_polarity/abbreviated.
MHRA
‘Direct Current Reverse Polarity’, All Acronyms, 9 ноября 2020 г., [по состоянию на 9 ноября 2020 г.]
Bluebook
All Acronyms Обратная полярность постоянного тока (ноябрь.9, 2020, 11:11), доступно по адресу https://www.allacronyms.com/direct_current_reverse_polarity/abbreviated.
CSE
Все сокращения. Обратная полярность постоянного тока [Интернет]; 9 ноября 2020 г. [цитируется 9 ноября 2020 г.]. Доступно по адресу: https://www.allacronyms.com/direct_current_reverse_polarity/abbreviated.

1 Сокращения для обозначения обратной полярности постоянного тока

Аббревиатура для обозначения обратной полярности постоянного тока

Обратная полярность постоянного тока

APA
Все сокращения.2020. Обратная полярность постоянного тока . Получено 9 ноября 2020 г. с https://www.allacronyms.com/direct-current_reverse_polarity/abbreviated
Chicago
All Acronyms. 2020. «Обратная полярность постоянного тока». https://www.allacronyms.com/direct-current_reverse_polarity/abbreviated (по состоянию на 9 ноября 2020 г.).
Harvard
Все сокращения. 2020. Direct-Current Reverse Polarity , All Acronyms, просмотрено 9 ноября 2020 г.,
MLA
Все сокращения. «Обратная полярность постоянного тока» . 9 ноября 2020 г. Web. 9 ноября 2020 г.
AMA
Все сокращения. Обратная полярность постоянного тока. https://www.allacronyms.com/direct-current_reverse_polarity/abbreviated. Опубликовано 9 ноября 2020 г. Проверено 9 ноября 2020 г.
CSE
Все сокращения. Обратная полярность постоянного тока [Интернет]; 9 ноября 2020 г. [цитируется 9 ноября 2020 г.]. Доступно по адресу: https://www.allacronyms.com/direct-current_reverse_polarity/abbreviated.
MHRA
‘Direct-Current Reverse Polarity’, All Acronyms, 9 ноября 2020 г., [по состоянию на 9 ноября 2020 г.]
Bluebook
Все сокращения, Постоянный ток с обратной полярностью (Nov.9, 2020, 11:11), доступно по адресу https://www.allacronyms.com/direct-current_reverse_polarity/abbreviated.
CSE
Все сокращения. Обратная полярность постоянного тока [Интернет]; 9 ноября 2020 г. [цитируется 9 ноября 2020 г.]. Доступно по адресу: https://www.allacronyms.com/direct-current_reverse_polarity/abbreviated.

Схема защиты от обратной полярности с использованием диода ИЛИ P-канального МОП-транзистора

Батареи являются наиболее удобным источником питания для подачи напряжения на электронную схему.Есть много других способов питания электронных устройств, таких как адаптер, солнечная батарея и т. Д., Но наиболее распространенным источником питания постоянного тока является аккумулятор. Обычно все устройства поставляются со схемой защиты от обратной полярности , но если у вас есть какое-либо устройство с батарейным питанием, которое не имеет защиты от обратной полярности, вы всегда должны быть осторожны при замене батареи, иначе это может взорвать устройство.

Итак, в этой ситуации Схема защиты обратной полярности будет полезным дополнением к схеме.Существует несколько простых методов защиты схемы от подключения с обратной полярностью, например, использование диода или диодного моста или использование полевого МОП-транзистора с каналом P в качестве переключателя на ВЫСОКОЙ стороне.

Защита от обратной полярности с помощью диода

Использование диода — самый простой и дешевый метод защиты от обратной полярности, но он имеет проблему утечки мощности . Когда входное напряжение питания высокое, небольшое падение напряжения может не иметь значения, особенно при низком токе.Но в случае низковольтной операционной системы недопустимо даже небольшое падение напряжения.

Как мы знаем, падение напряжения на диоде общего назначения составляет 0,7 В, поэтому мы можем ограничить это падение напряжения с помощью диода Шоттки, поскольку его падение напряжения составляет примерно 0,3–0,4 В, и он также может выдерживать большие токовые нагрузки. Имейте в виду, выбирая диод Шоттки, потому что многие диоды Шоттки имеют высокую утечку обратного тока, поэтому убедитесь, что вы выберете диод с низким обратным током (менее 100 мкА).

При 4 А потери мощности диодом Шоттки в цепи будут:

4 x 0,4 Вт = 1,6 Вт

А в обычном диоде:

4 x 0,7 = 2,8 Вт.

Вы можете даже использовать мостовой выпрямитель для защиты от обратной полярности, независимо от полярности. Но мостовой выпрямитель состоит из четырех диодов, поэтому количество потерь энергии будет вдвое больше, чем в приведенной выше схеме с одним диодом.

Защита от обратной полярности с использованием P-канального MOSFET

Использование полевого МОП-транзистора с каналом P для защиты от обратной полярности более надежно, чем другие методы, из-за низкого падения напряжения и возможности высокого тока.Схема состоит из P-канального МОП-транзистора, стабилитрона и понижающего резистора. Если напряжение питания меньше, чем напряжение затвор-исток (Vgs) P-канального MOSFET, вам понадобится только MOSFET без диода или резистора. Вам просто нужно подключить клемму затвора полевого МОП-транзистора к земле.

Теперь, если напряжение питания больше, чем Vgs, вам нужно понизить напряжение между выводом затвора и истоком. Компоненты, необходимые для изготовления аппаратной части схемы, упомянуты ниже.

Необходимый материал

  • FQP47P06 МОП-транзистор с P-каналом
  • Резистор (100кОм)
  • Стабилитрон 9,1 В
  • Макетная плата
  • Соединительные провода

Принципиальная схема

Работа схемы защиты от обратной полярности с использованием P-Channel MOSFET

Теперь, когда вы подключаете батарею в соответствии с принципиальной схемой, с правильной полярностью, это приводит к включению транзистора и пропусканию тока через него.Если батарея подключена в обратном направлении или с обратной полярностью, транзистор выключается, и ваша схема становится защищенной.

Эта схема защиты более эффективна, чем другие. Давайте проанализируем схему , когда батарея подключена правильно , полевой МОП-транзистор P-канала включится, потому что напряжение между затвором и истоком отрицательное. Формула для определения напряжения между затвором и истоком:

  Vgs = (Vg - Vs)  

Когда батарея подключена неправильно , напряжение на клемме затвора будет положительным, и мы знаем, что P-Channel MOSFET включается только тогда, когда напряжение на клемме затвора отрицательное (минимум -2.0 В для этого полевого МОП-транзистора или меньше). Таким образом, всякий раз, когда батарея подключается в обратном направлении, цепь будет защищена полевым МОП-транзистором.

Теперь давайте поговорим о потере мощности в схеме , когда транзистор включен, сопротивление между стоком и истоком почти незначительно, но для большей точности вы можете просмотреть таблицу данных МОП-транзистора с P-каналом. Для P-канального МОП-транзистора FQP47P06 статическое сопротивление сток-исток во включенном состоянии (R DS (ON) ) составляет 0,026 Ом (макс.).Итак, мы можем рассчитать потери мощности в цепи, как показано ниже:

  Потери мощности = I  2  R  

Предположим, ток, протекающий через транзистор, составляет 1 А. Значит потеря мощности будет

  Потери мощности = I  2  R = (1A)  2  * 0,026 Ом = 0,026 Вт  

Следовательно, потери мощности примерно в 27 раз меньше, чем в схеме с одним диодом. Вот почему использование P-канального MOSFET для защиты от обратной полярности намного лучше, чем другие методы.Он немного дороже диода, но делает схему защиты более безопасной и эффективной.

Мы также использовали в схеме стабилитрон и резистор для защиты от превышения напряжения затвор-исток. Добавив резистор и стабилитрон на 9,1 В, мы можем ограничить напряжение затвор-исток максимум до отрицательного значения 9,1 В, поэтому транзистор остается безопасным.

обратная полярность — голландский перевод — Linguee

Блок питания защищен от повреждений при равном t o f обратная полярность o r o vercurrent.

download.sew-eurodrive.com

De voedingsmethode — это bij verkeerde polariteit bij overstroom beschermd tegen beschadiging.

download.sew-eurodrive.com

Подключение n i s с обратной полярностью p r ot , так что неисправный контакт терминала не приводит к […]

с негативными последствиями.

Вальдманн.de

De aansluiting is ompolingszeker, zodat een verkeerd poolcontact geen nadelige gevolgen heeft.

waldmann.de

Наша гарантия не распространяется на повреждения, вызванные d b y обратной полярностью .

detandt.be

Schade die door ompoling veroorzaakt wordt, wordt niet gedekt door onze garantie.

detandt.be

DC-EC100 имеет защиту в s t обратная полярность , b ut блок питания должен обеспечивать защиту от короткого замыкания или перегрузки по току и допуск пульсации напряжения менее 5%.

interroll.com

DC-EC100 — это большой пул. De spanningsvoorziening moet echter een extra bescherming bieden tegen kortsluiting of overbelastingsstroom en de restgolving moet minder dan 5% bedragen.

interroll.com

Все входы защищены от

[…] перенапряжение a n d обратная полярность c o nn ection.

brutech.nl

De ingangen van de module zijn beveiligd

[…] tegen overspanni ng en verkeerde pol ar iteit.

brutech.nl

Примечание 1: В моделях с разъемом M8 отсутствует выходной диод ou tp u t с обратной полярностью p r или .

загрузки.industrial.omron.eu

Вариант 1: Модель с разъемом M8, который используется для диода, делает его более универсальным.

загрузокs.industrial.omron.eu

Если предпочтительна полуавтоматическая сварка, плавящийся электрод из свинца в защитном газе на

[…] постоянный ток t o f обратная полярность .

evek.biz

Als de gewenste semi-automatisch lassen, de elektrode van lood in beschermgas een constante

[…] stroom va n omgekeerde polariteit .

evek.nl

Он разработан для защиты автомобильной электроники и не искр. ng , обратная полярность p r или защита от короткого замыкания.

ctek.com

Hij is berekend op het beschermen van voertuigelektronica, hij is vonkvrij en beveiligd tegen omgekeerde polariteit en kortsluiting.

ctek.com

Модуль

[…] защищенный aga in s t обратная полярность , o ve r-Voltage, […]

перегрузки по току и имеет безопасное восстановление после сбоя питания.

axeu.nl

De модуль

[…] beschermd te gen omgekeerde pol ar iteit, overspanning, […]

overstroom en herstelt zich na een stroomonderbreking.

axeu.nl

Обратная полярность i s W белый на черном фоне.

graphics.kodak.com

De omgekeerd e polariteit i s wit op een zwarte achtergrond.

graphics.kodak.com

Зарядное устройство имеет класс защиты IP 65 (брызги и

[…] […] пыленепроницаемый), предназначенный для защиты электроники автомобиля и искр. в g , обратная полярность p r ot ected и защита от короткого замыкания.

ctek.nu

Обеспечивает высокую степень защиты IP65 (spatwater- en stofdicht) и обеспечивает его безупречное качество.

ctek.nu

Зарядное устройство имеет класс защиты IP 65 (защита от брызг и пыли), предназначено для защиты автомобильной электроники и искробезопасности в g , обратная полярность p r ot ected и защита от короткого замыкания.

glider-equipment.nl

Обеспечивает высокую степень защиты IP65 (spatwater- en stofdicht) и обеспечивает его безупречное качество. Hij является vonkvrij en beveiligd tegen omgekeerde polariteit en kortsluiting.

glider-equipment.nl

Полярность: главный компьютер предоставляет сканеру информацию, определяющую, должно ли изображение быть

[…] хранить в стандартном формате d o r обратная полярность .

graphics.kodak.com

Polariteit — hier kunt u via de

[…] Хост-компьютер

, сканер opdracht geven om de afbeelding, op te slaan met de

[…] standaardpolari te it of me t de omgekeerde po lariteit.

graphics.kodak.com

Обратная полярность f o r инвертированный ответ.

watson-marlow.com.mx

Draai de polariteit om als u een geïnverteerde response wilt.

watson-marlow.com.mx

Этот усилитель оснащен переключателем nd a обратная полярность s i gn al для повышения безопасности во время использования nd обратная полярность s i gn al.

ceteor.com

Усилитель Deze является стандартным устройством, оснащенным переключателем, также как и сигналом для поляритеизации на основе внешнего вида.

ceteor.com

Сварка выполняется прямым током re n t с обратной полярностью , m ov ing короткими отрезками.

evek.biz

Lassen wordt uitgevoerd met gelijkstroom omgekeerde polariteit, het verplaatsen in korte segmenten.

evek.nl

Защита: Protected agai ns t обратная полярность O ve r защита от перегрузки и короткого замыкания

ups-power-inverter.com

Bescherming: Beschermd tegen omgekeerde polaritei tsoverbelasting en kort: sluitenbescherming

dutch.ups-power-inverter.com

Полностью защищен от

[…] короткое замыкание a n d обратная полярность o f c кабели harge.

ctek.com

Volledig beveiligd tegen

[…] kortslui ti ng en omgekeerde polariteit van a ccukabels.

ctek.com

Недавно мы получили

[…] часто задаваемые вопросы regar di n g обратная полярность c o nn ectors In […]

в этом документе вы найдете 4 разных

[…]

типов разъемов (вилка, розетка, розетка RP, розетка RP).

multicap.biz

Recentelijk ontvingen we vragen

[…] aangaande re ve rse полярность con ne ctoren. В этом документе кан […]

u de 4 verschillende varianten

[…]

van connectoren (самец, самка, самец RP, самка RP) terug vinden om verwarring te voorkomen.

multicap.be

Фотоэлектрические датчики в нашей новой линейке E3T-C предназначены для использования с источниками постоянного тока в диапазоне от 12 В до 24 В. Они имеют

[…]

выходов с открытым коллектором номиналом 80 мА, а выходов полностью

[…] защищенный aga в s t обратная полярность a n d короткое замыкание.

industrial.omron.eu

Новая серия E3T-C forocellen открыта для посещения с DC-voedingen в een bereik van 12 до

[…]

24 В. Ze hebben 80 мА с открытым коллектором uitgangen die

[…] volledig bes ch ermd zij n tegen omgekeerde pol arit ei t en kortsluiting.

industrial.omron.nl

Защита выхода ti o n Обратная полярность , o ve защита от токов и короткого замыкания

upload.klay-instruments.nl

Uitgang bescherming Verkeerde polariteit, overspanning en kortsluiting Thermisch beveiligd

upload.klay-instruments.nl

Быстрая и простая установка wi t h обратная полярность p r ot вставное соединение

truma.com

Snelle en eenvoudige installatie met op en manier in te steken stekkerverbinding

truma.com

Со звуковой сигнализацией выход между контактами 5 и 11 wi l l обратная полярность .

covidien.com

Wanneer er sprake is van een akoestisch alarm, zal de polariteit van de output tussen pinnen 5 en 11 wisselen.

covidien.com

Таймер имеет вход резервного питания 24 В с t h с обратной полярностью p r или ection, а также резервную батарею, которая сохраняет правильную настройку часов .

fulltec.быть

Таймер снабжен резервным фургоном с питанием 24 В и дополнительным резервным аккумулятором, который находится в вашем распоряжении.

fulltec.be

Обратная полярность c h ar ging — Do n o t обратная t h 9040 o f t Аккумулятор во время зарядки, так как это приведет к разрядке аккумулятора.

corvus-energy.com

Omgekeerde po lariteit bij opladen — Draai de polariteit van de batterij niet om voor het opladen, hierdoor zal de batterij ontladen.

corvus-energy.com

Некоторые коммерческие внешние вспышки имеют клеммы синхронизатора с высоким напряжением e o r с обратной полярностью .

en.leica-camera.com

Клеммы, входящие в контактную плату externe flitsen hebben synchronische, соответствуют высокому напряжению omgekeerde polariteit.

us.leica-camera.com

Полностью защищенный aga in s t обратная полярность ( n o предохранитель).

alma-solarshop.com

Volledig

[…] besche rm d teg en omgekeerde polariteit (g een z ek ering).

alma-solarshop.com

O n e обратная полярность S M A разъем для внешней антенны.

w3.assaabloy.be

Een SMA buitenantenneconnector встретил большую полярность.

w3.assaabloy.be

AN013 — Защита от обратной полярности

AN013 — Защита от обратной полярности
Elliott Sound Products АН-013
Род Эллиотт (ESP)
Прил.Индекс банкнот
Основной индекс

Обзор защиты от обратной полярности

Большинство электронных схем будут серьезно раздражены, если питание будет подключено с обратной полярностью. Об этом часто свидетельствует немедленная потеря «волшебного дыма», от которого зависят все электронные компоненты. Если серьезно, то часто возникает непоправимый ущерб, особенно при напряжении питания 5 В и более. Традиционная схема защиты от обратной полярности состоит из диода, подключенного последовательно к входящему источнику питания или параллельно с предохранителем или другим защитным устройством, которое может перегореть.

Последовательный диод снижает напряжение в цепи, на которую подается питание. Если он работает от батарей, снижение напряжения может легко означать, что значительная часть емкости батареи недоступна для схемы. 0,7 В — это немного, но это настоящая проблема, если в схеме используется напряжение не менее 5 В, а 4 элемента по 1,5 В обеспечивают только номинальное напряжение 6 В. Последовательный диод также может рассеивать много ватт в цепи, потребляющей большой ток — постоянно или периодически.

Параллельный диод должен быть достаточно прочным, чтобы выдерживать полный ток короткого замыкания от источника до срабатывания предохранителя. Обычно это означает очень большой и дорогой диод. Можно использовать и меньший, но в «жертвенном» режиме. Это означает, что он, скорее всего, выйдет из строя (отказ диода всегда связан с коротким замыканием), но он должен быть достаточно надежным, чтобы гарантировать, что он не станет разрывом цепи во время периода отказа из-за соединения или плавкого предохранителя проводов.

Также можно использовать реле, преимущество которого заключается в практически нулевом падении напряжения на контактах.Однако катушки реле потребляют значительный ток, который легко может превышать ток, потребляемый защищаемой схемой. Если источником питания является большая батарея с возможностью подзарядки по запросу, это не проблема, за исключением небольших затрат на эксплуатацию реле. Однако во многих случаях это нежизнеспособный вариант.

Альтернативой является использование полевого МОП-транзистора. Во многих случаях речь идет только о MOSFET, без каких-либо других деталей. Это работает, если напряжение питания ниже максимального напряжения затвор-исток, но требуются дополнительные детали с напряжением более 12 В или около того.Преимущество полевого МОП-транзистора заключается в том, что падение напряжения исчезающе мало, если выбрано правильное устройство.

Часто можно использовать BJT (биполярный транзистор) также для защиты от обратной полярности, но они не работают так же хорошо, как полевые МОП-транзисторы и имеют несколько присущих им недостатков, которые делают их гораздо менее подходящими. Для начала, на базу должен подаваться ток, чтобы транзистор включился, а это пустая трата энергии. BJT не может включаться так же сильно, как MOSFET, поэтому падение напряжения на транзисторе больше.Хотя он обычно превосходит диод (даже Шоттки), реального преимущества нет, потому что MOSFET — гораздо лучший вариант.

На следующих чертежах есть раздел, помеченный просто как «Электроника». На нем изображены электролитический конденсатор и операционный усилитель, но это может быть что угодно, от простой аудиосхемы, логических вентилей (и т. Д.) До микропроцессора. Потребление тока может быть любым, от нескольких миллиампер до многих ампер, и вам нужно выбрать схему, которая лучше всего подходит для вашего приложения. Это не руководство по дизайну , а собрание идей, которые можно расширять и адаптировать по мере необходимости.


Диодная защита

Диод серии А — самый простой и дешевый вид защиты. В схемах низкого напряжения диод Шоттки означает, что падение напряжения снижается с типичных 0,7 В до примерно 200 мВ или около того. Тем не менее, это очень сильно зависит от тока, и при максимальном номинальном токе падение напряжения может превышать 1 В для стандартного кремниевого диода или около 500 мВ для типов Шоттки. Требуется только диод — никаких других деталей не требуется, так что это самый простой и дешевый вариант.


Рисунок 1 — Диодная защита, последовательная (слева), параллельная (справа)

Хотя последовательный диод очень легко реализовать, как отмечалось выше, минимальная потеря напряжения составляет 650 мВ или около того при низком токе, возрастающая с увеличением тока нагрузки. С диодом на 1 А потеря напряжения будет близка к 900 мВ при 1 А, что почти соответствует снижению напряжения питания. Если схема питается от батарей, это представляет собой серьезную потерю емкости, потому что около 900 мВт доступной мощности тратится впустую без уважительной причины.Если у вас достаточно запасной мощности или при высоком напряжении (25 В и более) потери в диоде незначительны.

Диоды Шоттки лучше, но они обычно дороже и недоступны для высоких напряжений. Для диода Шоттки 1 А вы можете ожидать потери около 400 мВ при 1 А. Диоды Шоттки имеют прямое напряжение от 150 мВ до 450 мВ, в зависимости от производственного процесса, номинального тока и фактического тока. Максимальное обратное напряжение составляет около 50 В, но обратная утечка выше, чем у стандартных кремниевых диодов.Это может вызвать проблемы с чувствительными устройствами, но обычно это не так. В скобках указано (более или менее) типичное напряжение на диоде Шоттки. Последовательному диоду может «помочь» параллельный диод на стороне оборудования, если утечка диода может вызвать проблемы. Это редко требуется или используется на практике.

При использовании параллельного диода (иногда называемого защитой «лом») он должен быть рассчитан на более высокий ток, чем может обеспечить источник. Если источником напряжения являются батареи (любая химия), они могут выдавать чрезвычайно высокий ток, поэтому требуются некоторые средства для отключения цепи — желательно до того, как диод перегреется и выйдет из строя.Хотя в 99% случаев диоды выходят из строя, это не то, на что стоит полагаться для защиты дорогой электроники. Некоторые источники питания могут возражать против короткого замыкания на выходе, могут ограничивать ток или выходить из строя.

Предохранитель

А — это самый простой и дешевый способ отключения питания, если он подключен в обратном направлении, и предохранитель должен быть рассчитан на максимальный ток, ожидаемый схемой. В этой схеме нет потери напряжения на диоде, но — это , небольшая потеря напряжения на предохранителе.Это падение напряжения обычно незначительно. Естественно, если питание будет подключено в обратном направлении, предохранитель (должен) перегореть, а диод может или не сможет выжить. Это означает, что система должна быть проверена и при необходимости отремонтирована, если в любое время будет отключено питание, включая замену предохранителя и / или диода. Возможно, вы сможете использовать термисторный переключатель PolySwitch с положительным температурным коэффициентом (PTC) — это зависит от многих факторов, которые необходимо изучить в первую очередь.


Релейная защита

Хотя поначалу это может показаться глупой идеей, реле — отличный способ обеспечить защиту от обратной полярности.Это при условии, что источник напряжения может питать реле без снижения его емкости. В оборудовании с батарейным питанием это обычно не вариант, но он может быть полезен для оборудования в легковых или грузовых автомобилях, где аккумулятор имеет большую емкость и постоянно заряжается при работающем двигателе. Реле не следует использовать для любого оборудования, которое постоянно подключено, так как оно со временем разрядит аккумулятор.

Как вы можете видеть ниже, катушка реле может получать ток только при правильной полярности.При положительном (положительном) входе D1 смещен в прямом направлении, и на катушку поступает около 11,3 В, что более чем достаточно для ее втягивания. (нормально разомкнутые) контакты замыкаются, на электронику подается питание. При изменении полярности в катушке не протекает ток, и электроника полностью изолирована от источника питания, поскольку реле не может активироваться.


Рисунок 2 — Релейная защита

Преимущество реле в том, что оно может выдерживать чрезвычайно высокий ток без падения напряжения на контактах.Реле надежны и могут работать многие, многие годы без какого-либо вмешательства. Им не нужен радиатор (независимо от потребляемого тока), и они доступны в бесчисленных конфигурациях и практически для любых известных требований. Автомобильные реле также уже прошли все необходимые обязательные испытания, поэтому они могут снизить стоимость испытаний на соответствие, если это необходимо.

Присущая реле жесткость является огромным преимуществом в автомобильных приложениях, где события «сброса нагрузки» являются обычным явлением.Это происходит, когда большая нагрузка отключается от электрической системы, и генератор не может выполнить исправление достаточно быстро, чтобы предотвратить перенапряжение. Есть и другие причины, и все автомобильное оборудование должно быть спроектировано таким образом, чтобы без сбоев выдерживать значительные перенапряжения. Реле легко справятся с этим.

Реле

доступны с различными напряжениями катушки (например, 5, 12, 24, 36, 48 В), и существуют модели для любых мыслимых требований по току контакта. Если входное напряжение слишком велико для катушки, можно использовать резистор, чтобы снизить напряжение до безопасного значения.Также может быть включена схема «эффективности» (последовательный резистор с параллельным электролитическим конденсатором), которая подает на реле более высокое, чем обычно, напряжение, чтобы втянуть его, а затем снижает ток при зарядке крышки до значения, немного превышающего гарантированный ток удержания (определяется резистором). Удерживающий ток может составлять всего 1/3 номинального тока катушки, а иногда и меньше.


Защита MOSFET У полевых МОП-транзисторов

есть очень желанная особенность. Все они имеют обратный диод, который определяет полярность напряжения, но когда полевой МОП-транзистор включен, он одинаково проводит в любом направлении.Таким образом, когда диод смещен в прямом направлении и полевой МОП-транзистор включен, напряжение на полевом МОП-транзисторе определяется R DS на (сопротивление сток-исток включено) и током, а не прямым напряжением диод. Это полезное свойство сделало полевые МОП-транзисторы предпочтительным устройством для схем защиты от обратной полярности.

Однако вы должны учитывать тот факт, что полевым МОП-транзисторам требуется некоторое напряжение между затвором и истоком для проведения, а в цепи с очень низким напряжением (менее 5 В) может не хватить напряжения для включения полевого МОП-транзистора.МОП-транзисторы логического уровня могут включаться при более низком напряжении, чем стандартные типы, но они также более ограничены с точки зрения R DS на , и доступно меньше устройств, особенно типов с P-каналом.

На чертеже показаны резистор и стабилитрон. Они обеспечивают защиту затвора для затвора полевого МОП-транзистора, если существует любая вероятность превышения максимального напряжения затвор-исток. Их можно опустить, но, как правило, это неразумно. Если кратковременный выброс превысит напряжение пробоя затвора (обычно около ± 20 В), полевой МОП-транзистор будет поврежден и почти наверняка будет проводить в обоих направлениях. Это полностью отменяет схему защиты !

Для оборудования, которое питается от батарей, маловероятно, что произойдет «разрушительное событие», но затвор полевого МОП-транзистора может быть поврежден при некоторых обстоятельствах. Это кажется маловероятным, но высокое обратное напряжение (например, статическое) может вызвать поломку, если защита не используется. Некоторые полевые МОП-транзисторы имеют встроенный стабилитрон затвора, поэтому резистор необходим для предотвращения разрушающего тока с напряжениями, превышающими напряжение стабилитрона.


Рисунок 3 — Защита MOSFET — N-канал (слева), P-канал (справа)

Вы можете использовать устройства с N-каналом или P-каналом, в зависимости от полярности цепи и от того, можете ли вы прервать соединение земли / заземления, не вызывая неправильного поведения цепи. В автомобильной среде шасси является отрицательным источником питания, и его трудно или невозможно отключить. Это означает, что схема защиты должна быть на положительной шине питания, что немного менее удобно, поскольку обычно требует P-Channel MOSFET.Обычно они имеют меньшую мощность и ток, чем их N-канальные аналоги. Вы все еще можете использовать устройство с N-каналом, но это более утомительно и требует дополнительных схем (показано ниже).

Если вы используете полевой МОП-транзистор с каналом P, прерывание заземления / заземления (отрицательное) отсутствует. Это особенно полезно для автомобильной электроники. Однако есть некоторые ограничения, о которых вы должны знать. Наиболее важным (и наиболее вероятным источником проблем) является требуемое напряжение затвор-исток.Это не проблема для автомобильных приложений, потому что доступно 12 В, но это проблема для более низких напряжений.

MOSFET с P-каналом логического уровня (5 В), безусловно, доступны, но, как уже отмечалось, они очень ограничены по сравнению с типами с N-каналом. Они также обычно более дороги для эквивалентных номинальных значений тока, и многие из них доступны только в корпусах для поверхностного монтажа (SMD). Это ограничивает их полезность в цепях с низким напряжением и высоким током, где невозможно или нецелесообразно отключать отрицательную шину (что позволяет использовать устройства с N-каналом).

Если в противном случае напряжение слишком низкое для включения полевого МОП-транзистора, существует возможность использования схемы накачки заряда для смещения устройства с N-каналом. Это добавляет сложности и стоимости, но является приемлемым вариантом, когда другие методы по какой-либо причине не подходят. Зарядный насос используется для генерирования напряжения, превышающего входящее напряжение (обычно примерно на 10-12 В или около того), и это напряжение включает полевой МОП-транзистор. Общая идея показана ниже, но подробности о зарядовом насосе не приводятся — это «концептуальная» схема, а не полное решение.Показанные защитные диоды могут понадобиться, а могут и не потребоваться, в зависимости от схемы.


Рисунок 4 — N-канальный МОП-транзистор с нагнетательным насосом

Существует много разных способов создания зарядного насоса, и схема выходит за рамки данной статьи. Однако он должен быть устроен так, чтобы саму зарядовую накачку нельзя было подвергнуть обратной полярности. Когда подается питание правильной полярности, собственный диод в Q1 проводит и подает питание на накачку заряда и остальную цепь.В течение нескольких миллисекунд зарядный насос генерирует напряжение, достаточное для включения Q1, и полевой МОП-транзистор включается и обходит свой собственный диод. Потеря напряжения определяется исключительно сопротивлением включенного МОП-транзистора и током, потребляемым схемой. Инкапсулированный преобразователь постоянного тока в постоянный (с плавающим выходом) может заменить зарядный насос, если это необходимо.


Транзистор биполярный

Использование BJT подходит для слаботочных нагрузок, но там, где напряжение может быть слишком низким для полевого МОП-транзистора из-за недостаточного напряжения затвора для его правильного включения.В примерах, показанных ниже, на транзисторе наблюдается падение примерно 125–150 мВ при токе нагрузки 40 мА. Падение напряжения намного меньше при меньших токах. R1 должен быть выбран, чтобы обеспечить достаточный базовый ток для насыщения транзистора. Обычно это означает, что вам необходимо обеспечить по крайней мере в три и до пяти раз больший базовый ток, чем вы рассчитали бы по бета-версии транзистора.

Например, транзистору с усилением (Beta или h FE ) 100 требуется 400 мкА для тока нагрузки 40 мА, но вы должны подавать не менее 5 мА, иначе падение напряжения на транзисторе будет чрезмерным.На чертеже предполагается, что транзистор имеет усиление не менее 65 (из таблицы), а резистор 2,2 кОм обеспечивает базовый ток около 2 мА — это сохраняет потери ниже 50 мВ при 40 мА. Невозможно ожидать гораздо лучшего, чем это, если бы базовый ток не стал чрезмерным. В показанных схемах транзистор рассеивает менее 10 мВт. Вы можете использовать небольшой сигнальный транзистор (например, BC549 или BC559) для слаботочных нагрузок.


Рисунок 5 — Транзистор PNP (слева), NPN (справа)

Существует внутреннее ограничение с использованием BJT, и это напряжение обратного пробоя эмиттер-база.В большинстве случаев напряжение пробоя составляет около 5 В, хотя для некоторых примеров оно может быть больше. Это означает, что входное напряжение выше 5 В, вероятно, неразумно, поскольку переход эмиттер-база будет иметь обратное смещение. Это вызывает ухудшение характеристик транзистора и может передать некоторое обратное напряжение на электронику. Полный пробой может передать полное обратное напряжение на электронику, что приведет к выходу из строя. Похоже, что эта проблема не была обнаружена в большинстве схем, которые я видел.

NPN-транзистор предположительно лучше, потому что они обычно имеют более высокое усиление и, следовательно, более низкие потери из-за более высокого сопротивления, используемого для питания базы. На практике разница в лучшем случае будет незначительной. Как и N-канальный MOSFET, NPN-транзисторы должны использоваться в отрицательном выводе и требуют, чтобы отрицательный вход и шасси могли быть изолированы. Возникает та же проблема обратного пробоя перехода эмиттер-база.


Заключение

Как всегда в электронике, каждая из этих схем имеет свои преимущества и недостатки.Вам необходимо выбрать вариант, наиболее подходящий для вашего приложения, исходя из требуемого тока, доступного напряжения и допустимого падения напряжения. В коммерческих продуктах стоимость может быть решающим фактором, часто за счет повышения производительности.

В некоторых случаях продукту может потребоваться выжить при воздействии импульса высокой энергии в рамках процесса испытаний и / или сертификации. Этого может быть трудно достичь с помощью некоторых из обязательных испытаний импульсными импульсами высокой энергии, используемых различными агентствами по всему миру, и это также то, что всегда следует учитывать в автомобильных приложениях, где скачки нагрузки могут вызвать скачки высокого напряжения во всем транспортном средстве. электрическая система.Следовательно, информация здесь будет не более чем отправной точкой для некоторых приложений. Тщательное тестирование необходимо для любого продукта, предназначенного для агрессивной среды.

Вы также должны учитывать вероятность (или нет) применения обратного напряжения. Во многих случаях это может произойти только тогда, когда продукт собран, и если это будет сделано таким образом, чтобы почти полностью исключить ошибки, обратная полярность никогда не возникнет. Большинство продуктов не имеют внутренней защиты от полярности, если они питаются от сети.Это связано с тем, что после сборки оборудования нет никакой возможности изменить полярность, кроме как кто-то неопытный, пытающийся его обслужить. Немногие продукты (если таковые имеются) учитывают ошибки, допущенные во время обслуживания.

Если ваша схема может справиться с падением напряжения на диоде и потребляет малый ток, то, вероятно, достаточно простого блокирующего диода (стандартного или Шоттки). Не думайте, что, поскольку схема MOSFET имеет лучшую производительность, она автоматически становится лучшим выбором.Эта производительность имеет повышенную стоимость и имеет свои особые ограничения. Хорошее проектирование должно минимизировать затраты и сложность и обеспечивать подход, который наилучшим образом соответствует вашим требованиям к дизайну.

Наконец, никогда не стоит недооценивать использование реле. Это одни из самых старых известных «электронных» компонентов (на самом деле они электромеханические, но это не относится к делу). Их надежность и универсальность не имеют себе равных среди других компонентов, и тот факт, что они до сих пор используются сотнями миллионов, является подтверждением этого факта.Обратной стороной является ток их катушки, но это часто имеет второстепенное значение.


Каталожные номера
  1. Является ли самое низкое прямое падение напряжения реальных диодов Шоттки всегда лучшим выбором — IXYS
  2. Схемы защиты от обратного тока / аккумулятора — Texas Instruments
  3. Автомобильные полевые МОП-транзисторы: Защита от обратного тока батареи — Infineon
  4. Защита цепи обратного тока — Замечания по применению — Maxim


Прил.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *