Кислородные датчики: подробное руководство — Denso
Вы наверняка знаете, что в вашем автомобиле установлен кислородный датчик (или даже два!)… Но зачем он нужен и как он работает? На часто задаваемые вопросы отвечает Стефан Верхоеф (Stefan Verhoef), менеджер DENSO по продукту (кислородные датчики).
B: Какую работу выполняет датчик кислорода в автомобиле?
O: Датчики кислорода (также называемые лямбда-зондами) помогают контролировать расход топлива вашего автомобиля, что способствует снижению объема вредных выбросов. Датчик непрерывно измеряет объем несгоревшего кислорода в выхлопных газах и передает эти данные в электронный блок управления (ЭБУ). На основании этих данных ЭБУ регулирует соотношение топлива и воздуха в топливовоздушной смеси, поступающей в двигатель, что помогает каталитическому нейтрализатору (катализатору) работать более эффективно и уменьшать количество вредных частиц в выхлопных газах.
B: Где находится датчик кислорода?
O: Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 г., оснащены датчиком кислорода. Обычно датчик установлен в выхлопной трубе перед каталитическим нейтрализатором. Точное местоположение датчика кислорода зависит от типа двигателя (V-образное или рядное расположение цилиндров), а также от марки и модели автомобиля. Для того чтобы определить, где расположен датчик кислорода в вашем автомобиле, обратитесь к руководству по эксплуатации.
В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах.
В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.
В: Какие бывают датчики?
О: Существует три основных типа лямбда-сенсоров: циркониевые датчики, датчики соотношения «воздух — топливо» и титановые датчики. Все они выполняют одни и те же функции, но используют при этом различные способы определения соотношения «воздух — топливо» и разные исходящие сигналы для передачи результатов измерений.
Наибольшее распространение получила технология на основе использования циркониево-оксидных датчиков (как цилиндрического, так и плоского типов). Эти датчики могут определять только относительное значение коэффициента: выше или ниже соотношение «топливо — воздух» коэффициента лямбда 1.00 (идеальное стехиометрическое соотношение). В ответ ЭБУ двигателя постепенно изменяет количество впрыскиваемого топлива до тех пор, пока датчик не начнет показывать, что соотношение изменилось на противоположное. С этого момента ЭБУ опять начинает корректировать подачу топлива в другом направлении. Этот способ обеспечивает медленное и непрекращающееся «плавание» вокруг коэффициента лямбда 1.00, не позволяя при этом поддерживать точный коэффициент 1.00. В итоге в изменяющихся условиях, таких как резкое ускорение или торможение, в системах с циркониево-оксидным датчиком подается недостаточное или избыточное количество топлива, что приводит к снижению эффективности каталитического нейтрализатора.
Датчик соотношения «воздух — топливо» показывает точное соотношение топлива и воздуха в смеси. Это означает, что ЭБУ двигателя точно знает, насколько это соотношение отличается от коэффициента лямбда 1.00 и, соответственно, насколько требуется корректировать подачу топлива, что позволяет ЭБУ изменять количество впрыскиваемого топлива и получать коэффициент лямбда 1.00 практически мгновенно.
Датчики соотношения «воздух — топливо» (цилиндрические и плоские) впервые были разработаны DENSO для того, чтобы обеспечить соответствие автомобилей строгим стандартам токсичности выбросов. Эти датчики более чувствительны и эффективны по сравнению с циркониево-оксидными датчиками. Датчики соотношения «воздух — топливо» передают линейный электронный сигнал о точном соотношении воздуха и топлива в смеси. На основании значения полученного сигнала ЭБУ анализирует отклонение соотношения «воздух — топливо» от стехиометрического (то есть Лямбда 1) и корректирует впрыск топлива. Это позволяет ЭБУ предельно точно корректировать количество впрыскиваемого топлива, моментально достигая стехиометрического соотношения воздуха и топлива в смеси и поддерживая его. Системы, использующие датчики соотношения «воздух — топливо», минимизируют возможность подачи недостаточного или избыточного количества топлива, что ведет к уменьшению количества вредных выбросов в атмосферу, снижению расхода топлива, лучшей управляемости автомобиля.
Титановые датчики во многом похожи на циркониево-оксидные датчики, но титановым датчикам для работы не требуется атмосферный воздух. Таким образом, титановые датчики являются оптимальным решением для автомобилей, которым необходимо пересекать глубокий брод, например полноприводных внедорожников, так как титановые датчики способны работать при погружении в воду. Еще одним отличием титановых датчиков от других является передаваемый ими сигнал, который зависит от электрического сопротивления титанового элемента, а не от напряжения или силы тока. С учетом данных особенностей титановые датчики могут быть заменены только аналогичными и другие типы лямбда-зондов не могут быть использованы.
В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.
B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.
B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.
Ассортимент кислородных датчиков
• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.
В DENSO решили проблему качества топлива!
Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации. При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.
Дополнительная информация
Более подробную информацию об ассортименте кислородных датчиков DENSO можно найти в разделе Кислородные датчики, в системе TecDoc или у представителя DENSO.
Датчик кислорода после катализатора
Чето скучно, видимо мне.
Эк меня поперло с бездарными постами 🙂
Теперь будем разбираться с катализаторами, лямбда-зондами (или, для краткости, лямбдами) и прочими скучными вещами.
У меня возникла мысль о создании такой темы довольно давно, еще после того, как меня на сервисе успешно развели на замену лямбд и пытались развести на замену катализаторов.
Если первое я еще проглотил, то второе меня сподвигло уже на изучение вопроса т.к. молча оплачивать такие счета было тяжело.
В результате пришлось разбираться со всей этой скучной мутатней, зато я избежал больших трат.
На жипе выпуск расположен с обоих сторон блока, с каждой из которых стоит свой катализатор и, на каждом из них, висит по 2 лямбды.
Т.е. всего на машине2 одинаковых катализатора и 4 лямбды трех видов.
Каждая лямбда стоит от 2.500р.
Каждый катализатор стоит от 35.000р
В случае замены, такое количество недешевых деталей не радует кошелек, поэтому имеет смысл понимать как они работают и как выглядят их неисправности, чтобы не кормить нечистоплотные автосервисы, предлагающие замену этих деталей тогда, когда этого делать совершенно не нужно.
Чуть теории
Если кто в этом во всем разбирается, то эту часть можно спокойно пропустить и листать до графиков.
Катализатор — это устройство, которое придумано и используется с одной единственной целью — уменьшить количество недогоревшего топлива, выбрасываемого в атмосферу.
Т.е. чистый происк зеленого движения, к функционированию автомобиля отношения не имеющий.
Даже больше — катализатор мешает мотору нормально дышать т.к. повышает сопротивление выпуска.
Бытует аналогичное мнение и про лямбды, как об абсолютно ненужных устройствах, но это не совсем так.
Одна из них, первая, установлена для того, чтобы обеспечивать максимально качественное смесеобразование в двигателе.
А вот вторая уже не нужна — она служит только для того, чтобы контролировать состояние катализатора.
Что такое катализатор?
Это устройство, которое сконструировано так, что задерживает пары топлива и, за счет специальных катализаторов окисления, дожигает несгоревшее топливо, обеспечивая его отсутствие в выхлопе автомобиля.
Материалы, которые используются в катализаторах, недешевы, поэтому катализаторы такие дорогие.
Из этого, кстати, следует такой вывод: дешевых катализаторов не бывает.
Если вы нашли где-то деталь, которая позиционируется как катализатор и при этом стоит в несколько рз дешевле оригинала, то, вероятнее всего, вас обманывают, подсовывая пустую трубу, которая назначение катализатора выполнять не будет.
В процессе своей жизни и выполнения своего назначения, материалы которые используются в катализаторе постепенно расходуются.
Т.е. неизбежно, рано или поздно, он перестанет функционировать.
Обычно срок жизни катализатора на бензиновом двигателе составляет от 100.000 до 200.000 километров пробега.
Некачественное топливо и разбалансированная система смесеобразования, которые способствуют скорейшему расходованию активных компонентов катализатора, приводят к значительному сокращению срока его жизни.
Т.е. убить катализатор равновероятно можно как некачественным бензином, так и настройками системы, которые регулярно переобогащают смесь.
Если есть желание продлить жизнь катализатора, то имеет смысл следить за настройками системы смесеобразования.
Если на качество заливаемого топлива повлиять практически невозможно, то содержать машину в исправном состоянии не так уж и сложно.
Что такое лямбда-зонд?
Это специальный датчик, который меняет свои характеристики в зависимости от того, какое количество кислорода, способного вступать в реакции окисления, находится в зоне его чувствительного элемента.
Т.е. это датчик, который измеряет количество кислорода, поэтому его так и называют: кислородный датчик.
Существует несколько различных конструкций таких датчиков, которые различаются рабочим напряжением, реакцией на изменение кислорода и конструктивными особенностями но, в общем, их конструкции одинаковы.
В особенности конструкций и различий вникать смысла особого нет.
С точки зрения рассматриваемой темы нужно запомнить всего одну простую вещь: этот датчик меряет количество кислорода и, если его больше, то его показания выше, если же в воздухе больше топлива, то его показания ниже.
Используемый в жипе датчик имеет рабочий диапазон измерений от 0.2 до 0.9 вольт.
Чем выше вольтаж, чем больше в воздухе кислорода и меньше топлива и наоборот.
Зачем нужна первая лямбда?
Задача любого двигателя внутреннего сгорания — перевести энергию сгорания топлива в механическую энергию.
Эффективность двигателя определяется тем, что количество бензина, который поступает в камеры сгорания ровно такое, какое даст максимальный эффект.
Т.е. его должно поступать ровно столько, сколько может сгореть.
Если его будет меньше, то выделится меньше энергии, если топлива будет больше, то оно не сгорит и впустую вылетит в выхлопную трубу.
Датчик кислорода используется мозгами автомобиля для контроля смесеобразования.
Они анализируют соотношение кислорода и топлива в газах выходящих из цилиндров.
Понятно, что если двигатель будет работать абсолютно идеально, то в выхлопных газах будет ровно ноль как кислорода так и топлива.
Т.е. сгорело абсолютно точно то количество топлива, которое могло сгореть, не больше и не меньше.
На практике, добиться такой эффективности невозможно, поэтому мозги постоянно контролируют состав смеси.
Контроль осуществляется иттерационно.
Подается какой-то объем топлива и воздуха, эта смесь сгорает, на основании результатов измерения лямбдой мозги видят в какую сторону надо скорректировать смесь, чтобы сгорание топлива было максимально эффективно.
Такая коррекция осуществляется непрерывно, каждый цикл впрыска топлива.
Зачем нужна вторая лямбда?
Этот датчик анализирует количество кислорода после катализатора.
Из описания назначения катализатора понятно, что идеальная ситуация такая, когда все несгоревшее топливо будет полностью сожжено в катализаторе.
Т.е. вторая лямбда должна показывать полное отсутствие топлива после катализатора, т.е. выдавать высокие значения напряжения (топлива нет, а кислород есть).
По мере износа катализатора его эффективность падает.
В результате критического износа он может разрушаться различными способами.
В нем может оказаться дыра или он, наоборот, может сплавиться внутри.
Последствие таких разрушений могут быть довольно печальными для двигателя.
Мозги автомобиля контролируют взаимное изменение лямбд до и после катализатора для того, чтобы своевременно увидеть критическое падение эффективности катализатора и, в случае обнаружения такой ситуации, будет зафиксирована ошибка и на приборной панели загорится знак неисправности.
Несколько рассуждений про слухи
В интернете бытует множество мнений, слухов и утверждений о том, как должны себя вести катализатор и лямбды, на что они влияют и что с ними можно и нужно делать.
Часть этих мнений абсолютно не соответствуют действительности и следование им может причинить вред как автомобилю, так и карману владельца.
Прокомментирую тут некоторые из них.
Лямбды не нужны, их нужно выкинуть
Это абсолютно неверно.
Как можно понять из описания выше, одна из лямбд служит для правильного образования смеси, а вторая для контроля состояния катализатора.
Если хочется, чтобы мотор работал максимально эффективно и с наибольшей экономичностью, то первая лямбда должна быть исправна и нормально функционировать.
Удалять вторую лямбду можно, но строго вместе с удалением катализатора, иначе мозги двигателя не смогут контролировать его состояние и это может привести к его разрушению и фатальным последствиям для двигателя.
Катализаторы необходимо выбивать как можно быстрее
Мнение обосновано только на автомобилях, где не установлена вторая лямбда.
На таких машинах ничто не контролирует состояние катализатора и его кончину предсказать невозможно, поэтому она может наступить внезапно и даже чем-то навредить.
В случае если на автомобиле используется только одна лямбда, то катализатор можно безболезненно и просто ампутировать в любое время.
Если же на автомобиле установлены две лямбды, то ампутировать катализатор легко не получится.
При его удалении мозги тут же увидят его отсутствие а высветят ошибку на приборной панели.
Совместно с удалением катализатора, в обязательно порядке, необходимо либо произвести перепрограммирование (чип-тюнинг) автомобиля с исключением контроля состояния катализатора, либо устанавливать специальную электронную обманку, которая будет для мозгов делать вид, как будто катализатор жив и никуда не делся.
И то и другое действие требует денег, часто немалых, поэтому предпринимать их до тех пор пока катализатор не выйдет из строя абсолютно бессмысленно.
Катализатор нереально душит двигатель
Это мнение ошибочное — в исправном состоянии он оказывает незначительное отрицательное влияние на работу двигателя.
Значительно влиять на работу двигателя он начинает когда его ресурс подходит к концу.
За редкими исключениями в первую очередь снижается его пропускная способность и двигатель начинает задыхаться: теряется мощность, растет потребление топлива.
Если на автомобиле есть контроль за его состоянием и нет ошибок по его эффективности, то катализатор исправен.
В случае приближения его кончины, об этом сообщит лампа на приборной панели.
До этого момента мешать ему работать смысла нет.
Установка лямбд от ВАЗа — это ужасающий колхоз, надо ставить только оригинал!
Это мнение абсолютно неверное.
Принцип действия всех датчиков одинаковый, отличия только в особенностях реализации.
Если его конструктив, особенности работы и конструктив одинаковые, то независимо от того для какой марки автомобиля он предназначен исходя из надписи на коробке — он будет замечательно работать на любой машине с такой же схемой подключения.
Практика
Как обычно, я использую TorquePro для отображения и простейший Bluetooth ODBII передатчик для получения данных от датчиков автомобиля.
В интернете, как обычно, множество противоречивых данных о том как должны выглядеть «правильные» и «неправильные» данные лямбд и как их нужно интерпретировать.
Ситуацию осложняют конструктивные особенности лямбд.
Некоторые работают с инверсией, некоторые в другом диапазоне, в результате сориентироваться с непривычки сложно.
Приведу несколько графиков с комментариями, чтобы было понятнее.
Чуть подготовки.
На страничку вытаскиваем два датчика кислорода для одного банка (одной стороны), например для первого.
Называются они O1x1 и О1х2, т.е. первая (до катализатора) и вторая (после) соответственно в виде графиков в удобном размере.
Так же, обязательно, необходимо вывести показания температуры катализатора т.к. мозги начинают использовать данные от лямбд для коррекции смеси только после его прогрева.
Называется он, для первого банка, Cat B1S1.
На моих картинках выведены показания температуры для обоих.
Остальные датчики вытаскиваем по вкусу.
Я вытащил температуру двигателя хотя, в познавательных целях, было бы нагляднее установить количество оборотов двигателя в виде графика.
Ну да ладно.
Вот так должен выглядеть график с лямбд при исправном катализаторе на двигателе без нагрузки (например холостом ходу):
На левом графике лямбда до катализатора.
На ней видно итерации, которые осуществляют мозги двигателя для достижения максимального сгорания смеси в цилиндрах.
Они чуть обогащают смесь, контролируют результат и, на следующем цикле прапорционально ее обедняют.
В среднем, количество подаваемого воздуха и топлива в смеси получается идеальным — сгорает практически все топливо и двигатель работает максимально эффективно.
Такие колебания мозги осуществляют специально, чтобы, заодно, контролировать состояние лямбды.
Если бы смесь генерировалась всегда одинаковая и при этом лямбда выдавала одно и то же значение, то невозможно было бы уловить момент, когда она выйдет из строя и, значит, на ее показания уже нельзя полагаться.
Если лямбда выходит из строя она начинает с задержкой реагировать на изменение смеси или вовсе перестает менять свои показания.
В таком случае мозги записывают ее ошибку и высвечивают ее на приборной панели.
Дальнейшее смесеобразование осуществляется без учета ее показаний по встроенным в мозги таблицам.
Т.к. фактическая ситуация всегда отличается от табличной, то такое регулирование не может быть эффективным.
Возрастает количество потребляемого топлива, возможно значительно, и двигатель начинает работать менее эффективно.
В случае, если на машине используется катализатор, то первую лямбду всегда необходимо поддерживать в исправном состоянии т.к. пере обогащенная смесь, на которую как правило ориентированы внутренние таблицы, будет снижать ресурс катализатора.
Ему придется пережигать большее количество топлива, сильнее разогреваться и расходовать больше внутренних компонентов.
На правом графике мы видим показания второй лямбды, установленной после катализатора.
В данном случае она показывает практически ровню линию с незначительными колебаниями и средним высоким значением.
Это говорит о том, что все лишнее топливо было успешно дожжено в катализаторе и в смеси, которая вышла из него соотношение кислорода и топлива максимально в сторону кислорода.
Это свидетельствует о нормальной работе катализатора.
По величине напряжения можно судить об усталости катализатора.
Когда он начнет терять эффективность линия сохранит свою форму, но упадет количество кислорода.
Если катализатор в хорошем состоянии, то выдаваемое им напряжении будет составлять от 0.6 до 0.9 вольт.
Если линия значения будет абсолютно ровной — это может свидетельствовать о неисправности лямбды.
О замыкании внутри нее или, наоборот, пробое.
В таком случае величина напряжения будет неизменна во всех условиях.
Если удалить катализатор полностью или в нем образуется дыра и недожженные газы начнут прорываться насквозь, то график второй лямбды начнет в точности повторять график первой с небольшой задержкой по времени и уменьшением амплитуды сигнала в зависимости от величины отверстия.
Это и логично — топливо не сгорает, поэтому сколько его зашло в катализатор, столько и вышло, значит графики датчиков должны совпадать.
Лямбда-зонд
С конца 80-х годов у большинства автомобилей появилась такая деталь, как датчик содержания кислорода в выхлопных газах. Лямбда-зонд, О-2 датчик, кислородный датчик (Oxygen Sensor) – так по разному могут называть эту небольшую, но важную детальку. С началом выпуска автомобилей с каталитическим нейтрализатором выхлопных газов появилась необходимость и в лямбда-зонде. Для нормальной работы катализатора нужно обеспечить постоянное оптимальное соотношение воздуха и топлива в рабочей смеси, поступающей в камеру сгорания. В противном случае способность катализатора доокислять вредные примеси будет недостаточной и недолгой. 14.7 частей воздуха и 1 часть топлива – именно такой состав обеспечивает максимальное сгорание топливно-воздушной смеси, а лямбда-зонд предназначен как раз для того, что бы помогать «мозгам»(ECU) поддерживать эту пропорцию. В зависимости от содержания кислорода в выхлопе датчик выдаёт соответствующее напряжение и ECU корректирует состав смеси путем изменения количества подаваемого в цилиндры топлива.
Как взаимосвязаны лямда-зонд и катализатор?
Учитывая вышесказанное, становится ясно, что катализатору необходимо наличие лямбда-зонда, а вот лямбда-зонду нужен ли катализатор? Будет ли он правильно работать, если катализатор, к примеру, удалён? Попробуем ответить: датчик стоит перед катализатором и меряет содержание кислорода в газах именно перед ним, и после удаления катализатора так и будет продолжать мерять дальше, то есть наличие или отсутствие катализатора никак не влияет на сигналы, которые даёт лямбда-зонд, на них влияет только количество кислорода. Другое дело, когда стоят два кислородных датчика – один до, а другой после катализатора. На основании сигналов от второго датчика происходит дополнительная корректировка состава смеси, а содержание кислорода после прохождения газов через катализатор конечно же меняется, и вот тогда его отсутствие может отрицательно сказаться на процессе образования топливно-воздушной смеси.
Можно ли отключить лямбда-зонд?
После замены катализатора на пламегаситель, наличие лямбда-зонда, как детали обеспечивающей в числе прочего качественную работу катализатора, становится не важным, поэтому часто возникает вопрос: можно ли эксплуатировать автомобиль совсем без лямбда-зонда? Здесь одного решения для всех нет. Наиболее просто и правильно эта задача решается в том случае, если у данного автомобиля предусмотрена возможность перепрограмировать ECU на режим работы без катализатора, как, например, у большинства BMW с мозгами Бош (Сименс не перепрограмируется). В этом случае после удаления катализатора меняется программа управления и лямбда-зонд просто снимается и всё. У некоторых марок автомобилей перепрограмирование невозможно и если неисправность датчика сильно влияет на работу мотора, тогда выхода нет – должен стоять исправный датчик. Так же у многих автомобилей неисправность или отсутствие л-зонда практически не сказывается ни на динамике, ни на расходе топлива, такой плюс есть, например, у большинства Тойот и Мерседесов начала 90-х годов. В таком случае можно спокойно спокойно эксплуатировать машину и без датчика, но конечно ещё лучше, когда всё в порядке.
Взаимозаменяемы ли датчики от различных автомобилей?
Лямбда-зонды отличаются друг от друга резьбовой частью, наличием подогрева, количеством проводов и соединительным разьёмом. А принцип работы и сам рабочий элемент у всех датчиков практически одинаковые. Поэтому если у вашего датчика три провода и резьба 18х1.5, то можете смело ставить универсальный датчик с такими же параметрами или, например, от ВАЗ 2110. Датчик работать будет правильно, а его надёжность и долговечность будет зависеть уже от производителя. Если не доверяете «жигулёвским деталям», а нужного вам датчика нет в наличии, то в магазинах можно найти универсальный датчик практически любого типа. Главное не перепутать при перепаивании провода. Даже различие резьбы не так страшно. На большинстве японских автомобилей резьба лямбда-зонда меньшего диаметра, чем у европейских, и если только датчик стоит не в чугунном коллекторе, то можно просто вварить гайку с нужной резьбой. Единственно нужно помнить о том, что попытка съэкономить небольшую сумму очень часто выливается в ещё большие потери, и прежде чем что-либо переделывать в своей машине, лучше как следует подумать.
Чего не любит кислородный датчик?
Рабочий элемент датчика очень чувствительный и быстро выходит из строя, если подвергается воздействию различных вредных присадок, содержащихся в некачественном бензине, особенно вреден свинец. Попадающие в камеру сгорания антифриз или масло, перегрев или плохие контакты в электропроводке также отрицательно сказываются на его долговечности. Проверять работоспособность можно как осциллографом, так и лямбда-тестером, но последний редко встречается в отечественных автосервисных предприятиях, хотя и более точен в своих показаниях.
- Являются ли взаимозаменяемыми датчики кислорода, устанавливаемые до и после катализатора?
- Разница только в длине проводки или еще в чем то?
Форд Мондео IV, 2.0 л.
- Как понять результаты диагностики лямбда зонда? – 2 ответа
Датчики могут быть одинаковыми, а вот разница в длине провода делает их разными — разница в сопротивлении, а значит в показаниях. При установке универсальных датчиков приходится соблюдать длину провода и пайка проводов запрещена.
У них разные задачи и потому лямбды разные.
Даже и цена отличается.
Первый датчик кислорода используется мозгами автомобиля для контроля смесеобразования.
Второй датчик анализирует количество кислорода после катализатора, можно сказать его задача контролировать исправен катализатор или нет.
Спасибо, но не совсем убедительно.
Цена, однозначно не показатель чего-либо. Тут и поставщики и сроки доставки и производители и .
Теперь по функционалу: смотрим на EMEX, оригиналы и аналоги
Датчик верхний (код: 1 376 444)
Аналог: Denso код: DOX01-50 (Япония)
Датчик нижний (код: 1 376 445)
Аналог: Denso код: DOX01-50 (Япония)
Коды аналогов одинаковые (конкретно в данном случае и у конкретного производителя), что для верхнего, что для нижнего датчиков.
По принципу работы. Принцип работы одинаковый (контроль кислорода), оба контролируют один и тот же поток отработанных газов, до и после катализатора. Соответственно их устройство, чувствительность и принцип действия должен быть одинаковым. Оба подают на выходе электрический сигнал, соответствующий уровню содержания кислорода. Только сигнал с первого датчика управляет смесеобразованием, а сигнал со второго датчика контролирует исправность первого датчика.
Если напряжение сигналов одинаковое, значит: или не исправен катализатор или не исправен первый датчик, так как он не управляет составом смеси.
Соответственно, сами датчики должны быть одинаковыми, а отличие в кодовой маркировке отражает только необходимую длину проводки от места установки датчика до соединительного разъема.
Логика следующая, что бы измерить изменения какого либо параметра на входе и на выходе, измерительный инструмент на входе и на выходе должен быть идентичным по своим характеристикам.
Есть ли разница в верхнем и нижнем лямбда зондах?
С конца 80-х годов у большинства автомобилей появилась такая деталь, как датчик содержания кислорода в выхлопных газах. Лямбда-зонд, О-2 датчик, кислородный датчик (Oxygen Sensor) — так по разному могут называть эту небольшую, но важную детальку. Это связано с началом выпуска автомобилей с каталитическим нейтрализатором выхлопных газов.
14.7 частей воздуха и 1 часть топлива — именно такой состав обеспечивает максимальное сгорание топливно-воздушной смеси. Лямбда-зонд предназначен как раз для того, что бы помогать «мозгам»(ECU) поддерживать эту пропорцию. В зависимости от содержания кислорода в выхлопе датчик выдаёт соответствующее напряжение и ECU корректирует состав смеси путем изменения количества подаваемого в цилиндры топлива.
В сути своей ЛЯМДА-ЗОНД – это батарейка с керамическим электролитом, содержащим диоксид циркония и электродами из платины. Электролит оживает только при температуре 300-350 С, поэтому ЛЯМДА-ЗОНД обязательно надо разогревать. Разность потенциалов между электродами возникает при соприкосновении электродов с воздушной смесью с различным содержанием кислорода. Элемент исполнен таким образом, что при снижении количества кислорода у одного электрода ниже критического уровня ЭДС этой батарейки резко растет от 0 до 1 вольта (и наоборот). Критический уровень кислорода соответствует остатку кислорода при сгорании оптимальной топливной смеси. Это свойство ЛЯМДА-ЗОНД используется для организации регулирования топливной смеси через блок управления ECU.
Как взаимосвязаны катализатор и лямбда-зонд?
Для нормальной работы катализатора нужно обеспечить постоянное оптимальное соотношение воздуха и топлива в рабочей смеси, поступающей в камеру сгорания. В противном случае способность катализатора доокислять вредные примеси будет недостаточной и недолгой.
Учитывая вышесказанное, становится ясно, что катализатору необходимо наличие лямбда-зонда, а вот лямбда-зонду нужен ли катализатор? Будет ли он правильно работать, если катализатор, к примеру, удалён? Попробуем ответить: датчик стоит перед катализатором и измеряет содержание кислорода в газах именно перед ним, и после удаления катализатора так и будет продолжать измерять дальше, то есть наличие или отсутствие катализатора никак не влияет на сигналы, которые даёт верхний лямбда-зонд, на них влияет только количество кислорода. Другое дело, когда стоят два кислородных датчика — один до (верхний), а другой после катализатора (нижний датчик). На основании сигналов от нижнего датчика происходит дополнительная корректировка состава смеси. Содержание кислорода после прохождения газов через катализатор конечно же меняется, и вот тогда его (нижнего датчика) отсутствие может отрицательно сказаться на процессе образования топливно-воздушной смеси.
Можно ли отключать лямбда-зонд?
После замены катализатора на пламегаситель, наличие второго лямбда-зонда, как детали обеспечивающей в числе прочего качественную работу катализатора, становится не важным, поэтому часто возникает вопрос: можно ли эксплуатировать автомобиль совсем без нижнего лямбда-зонда? Здесь одного решения для всех нет. Наиболее просто и правильно эта задача решается в том случае, если у данного автомобиля предусмотрена возможность перепрограммировать ECU на режим работы без катализатора, как, например, у большинства BMW с мозгами Бош (Сименс не перепрограммируется). В этом случае после удаления катализатора меняется программа управления и второй лямбда-зонд просто снимается и всё. У некоторых марок автомобилей перепрограмирование невозможно и если неисправность датчика сильно влияет на работу мотора, тогда выхода нет — должен стоять исправный датчик. Так же у многих автомобилей неисправность или отсутствие л-зонда практически не сказывается ни на динамике, ни на расходе топлива, такой плюс есть, например, у большинства Тойот и Мерседесов начала 90-х годов. В таком случае можно спокойно эксплуатировать машину и без датчика, но конечно ещё лучше, когда всё в порядке.
Итак, нижний датчик, который устанавливается позади катализатора, измеряет содержание кислорода и этой точке. Это необходимо в следующих целях:
• чтобы оптимизировать регулировку подачи топлива;
• чтобы отслеживать старение верхнего датчика;
• чтобы контролировать работу катализатора.
Взаимозаменяемы ли датчики от различных автомобилей?
Лямбда-зонды отличаются друг от друга резьбовой частью, наличием подогрева, количеством проводов и соединительным разъёмом. А принцип работы и сам рабочий элемент у всех датчиков практически одинаковые. Поэтому если у вашего датчика три провода и резьба 18х1.5, то можете смело ставить универсальный датчик с такими же параметрами или, например, от ВАЗ 2110. Датчик работать будет правильно, а его надёжность и долговечность будет зависеть уже от производителя. Если не доверяете «жигулёвским деталям», а нужного вам датчика нет в наличии, то в магазинах можно найти универсальный датчик практически любого типа. Главное не перепутать при перепаивании провода. Даже различие резьбы не так страшно. На большинстве японских автомобилей резьба лямбда-зонда меньшего диаметра, чем у европейских, и если только датчик стоит не в чугунном коллекторе, то можно просто вварить гайку с нужной резьбой. Единственно нужно помнить о том, что попытка сэкономить небольшую сумму очень часто выливается в ещё большие потери, и прежде чем что-либо переделывать в своей машине, лучше как следует подумать.
Кислородный датчик: устройство, назначение, диагностика
Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.
Лямбда и стехиометрия двигателя
Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.
Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.
Зависимость мощности и расхода топлива от состава смеси
Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.
Зачем нужен кислородный датчик
Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.
Схема лямбда-коррекции двигателя
Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.
Где находится кислородный датчик
Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.
Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.
Устройство кислородного датчика
Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.
Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.
В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.
Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.
Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.
Причины и признаки неисправности лямбда-зонда
Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.
Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.
Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.
Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.
Универсальные кислородные датчики
Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.
Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.
Если продолжать ездить с неисправным лямбда зондом
Кратко:
• Снижение компрессии в цилиндрах, повышенный износ компрессионных колец и цилиндров и, как результат, сокращение ресурса двигателя. Выход из строя свечей зажигания.
• Гарантированный выход из строя катализатора, 2-го лямбда зонда в случае продолжения езды с неисправным 1-м лямбда зондом.
• Ухудшение холодного пуска двигателя, некомфортная езда, сопровождаемая пониженной мощностью и плавающими оборотами холостого хода и иногда провалами на оборотах от 2000 до 3000.
• Повышенный расход топлива, в среднем на 5-20% от обычного и даже до 50% в тяжелых случаях, что в итоге выльется за год как раз в стоимость новенького лямбда зонда.
• Сигнализирующая о неисправности лампочка Check Engine, которая попросту добавляет беспокойства в вашу жизнь и за которой можно просмотреть другую неисправность.
Подробнее:
При появлении любой неисправности современного автомобиля необходимо поспешить с её устранением, желательно отказавшись от дальнейшей интенсивной эксплуатации до её устранения. Это относится к лямбда зондам в большей степени, чем к каким бы то ни было другим деталям . Как уже известно из статьи «Для чего нужен лямбда зонд?», этот датчик вместе с катализатором, отвечает не только за очистку выхлопных газов от вредных примесей, но и за правильность смесеобразования в камерах сгорания. Звучит довольно невинно, и многие автолюбители полагают, что после выхода из строя кислородного датчика, всё, что им грозит, это повышение вредных примесей в выхлопной системе. Однако это далеко не так.
Давайте попробуем разобраться, что же происходит с двигателем и его системами при продолжении эксплуатации автомобиля с неисправным кислородным датчиком на примере двух главных угроз.
Сокращение ресурса двигателя.
Кратко опишем механизм этого процесса, который развивается в двух направлениях.
В результате неисправности датчика или его неправильной работы под воздействием внешних факторов, в цилиндры может подаваться переобогащённая топливная смесь. Эта смесь сгорает не полностью в результате чего, электроды и изоляторы свечей и камеры сгорания покрываются чёрным нагаром. Обильный нагар закоксовывает компрессионные кольца цилиндров. Возникает неполное прилегание и снижение компрессии, в результате чего часть газов поступает в картер и «отравляет» масло.
Но это ещё не так опасно как процесс, идущим параллельно с вышеописанным. Остатки несгоревшего топлива, проникшего за компрессионные кольца, смывают масляную плёнку с поверхности цилиндра, возникает сухое трение, приводящее к сокращению его ресурса, а в запущенных случаях и к перегреву двигателя.
Выход из строя катализатора и 2-го лямбда зонда.
Как мы уже выяснили, в выхлопную трубу попадают отработавшие газы с остатками топлива. В результате, катализатор начинает работать в аварийном режиме, дожигая остатки топлива. Постепенно катализатор разрушается, продукты его разрушения начинают забивать его соты. Катализатор начинает перегреваться и оплавляется, окончательно запечатывая всю свою сотовую структуру. В итоге мощность двигателя окончательно падает и автомобиль перестаёт ехать из-за того, что нет места для свободного отвода отработавших газов. В течение этого процесса отравляется и 2-й лямбда зонд.
Другой, важной причиной, по которой следует быстрее заменить датчик кислорода, это необходимость погасить горящую лампочку Check Engine, поскольку за ошибкой лямбда зонда, можно проглядеть появление другой ошибки.
Лямбда-зонд (датчик кислорода). Устройство лямбда-зонда
- Замена лямбда-зонда
- Установка лямбда зонда
Строгие экологические нормы (которые, к тому же, постоянно ужесточаются) требуют постоянного контроля токсичности выхлопа автомобиля. За параметрами следит блок управления двигателем, регулируя степень обогащения топливной смеси. Для правильной работы этого компьютера требуются специальные датчики.
Система, в которой установлены кислородные датчики, функционирует следующим образом:
- В начале выхлопной трубы находится катализатор, снижающий токсичность отработанных газов.
- Перед катализатором размещен датчик кислорода (лямбда зонд), который анализирует неочищенный состав выхлопа. Этот элемент помогает формировать правильную смесь. Если для поддержания требуемой мощности двигателя расход топлива слишком большой, компьютер дает команду на снижение количества бензина.
- После каталитического нейтрализатора находится второй датчик О2. Он отвечает в основном за оценку токсичности выхлопа. Его показания также меняют настройки обогащения топливной смеси.
Становится понятно, что датчик лямбда зонда влияет не только на экологию, а также на мощность автомобиля и расход топлива.
Важно! Речь идет о системе с двумя лямбдами. Автомобили, в которых установлен один кислородный датчик, встречаются сейчас относительно редко. Следует знать, что пара лямбд (до и после катализатора) устанавливается на выходе из каждого выпускного коллектора. Если у вас двигатель V6, V8 или V10, с двумя коллекторами – количество датчиков удваивается.
Ресурс лямбды составляет 50-100 тысяч километров, в зависимости от условий эксплуатации, особенности самого датчика и ряда других факторов. Это достаточно дорогой расходник, его замена ощутима для кошелька.
Как работает датчик концентрации кислорода
Принцип действия рассматриваемого элемента основан на изменении электрического потенциала между электродами, при различном содержании кислорода в анализируемом воздухе. Один электрод – внешний, выполнен с применением платины (это оправдывает высокую стоимость). Второй – внутренний, из циркония. Эти металлы при прохождении атомов кислорода, формируют некоторый потенциал, увеличивающийся при повышении концентрации О2.
Для нормальной работы датчика требуется температура от 300 до 1000 °C. Пока двигатель не прогрелся, система не функционирует должным образом. Мощность силовой установки избыточна, токсичность выхлопа – высокая. Для моментальной готовности лямбды, внутренний электрод нагревается. К нагревателю подводятся дополнительные провода питания.
Универсальный кислородный датчик может иметь различную конструкцию – широкополосный, двухточечный, коаксиальный. Принцип анализа концентрации О2 один и тот же.
Неисправность лямбда зонда приводит к серьезным проблемам в работе двигателя. Поэтому не стоит игнорировать поломку. И тем более, нельзя самостоятельно пытаться отремонтировать датчики. Даже если Вы знаете, где находится лямбда зонд, его легко повредить при демонтаже. В условиях высоких температур резьба намертво прикипает. А использовать стандартный накидной ключ невозможно, по причине длинных проводов, выходящих из датчика.
Обратившись в сервис «Ваш глушитель», Вы получите грамотную диагностику и профессиональный ремонт без повреждения хрупких лямбда зондов. Наши мастера знают все неисправности датчика кислорода, и смогут устранить поломку с минимальными финансовыми затратами. Не обязательно сразу менять деталь, некоторые дефекты подлежат ремонту. Специалисты нашего сервиса по ремонту выхлопных систем помогут Вам сэкономить на ремонте.
youtube.com/embed/56diZTOhEB8″/>
Кислородные датчики
Часто задаваемые вопросы о кислородных датчиках.
Купить кислородный датчик можно в нашем интернет-магазине
Какие функции выполняет кислородный датчик?
Датчик кислорода определяет содержание кислорода в выхлопных газах и передаёт эту информацию блоку управления двигателем (компьютеру), который, в свою очередь, регулирует состав топливо/воздушной смеси. Кислородные датчики также называют лямбда-датчиком. Лямбдой называют отношение реального количества воздуха к необходимому количеству воздуха. Если лямбда равна единице то состав топливо/воздушной смеси оптимален и составляет 1/14,7, если лямбда больше единицы – смесь бедная (много кислорода, мало топлива), если меньше единицы – смесь богатая (мало кислорода, много топлива). Слишком большое количество кислорода в выхлопных газах говорит о бедности смеси (малом содержании топлива), что приводит к снижению мощности двигателя и пропускам в зажигании (двигатель “троит”). Слишком малое количество кислорода, свидетельствует о переобогащенной смеси (большом количестве топлива), что приводит к повышенному расходу топлива и повышению токсичности выхлопных газов.
Почему ломается кислородный датчик?
Воздействие высокой температуры, давления, вибрации и различных химических соединений на кислородный датчик приводят к постепенному выходу его из строя. После его поломки наблюдается повышенный расход топлива, снижение мощности двигателя, повышение токсичности выхлопных газов. Именно поэтому проверка работоспособности и при необходимости замена кислородного датчика является важным элементом технического обслуживании автомобиля.
Где расположен кислородный датчик?
Кислородный датчик определяет количество кислорода в выхлопных газах и располагается в выхлопной трубе. Практически все автомобили с бензиновым двигателем, выпущенные после 1986 года имеют как минимум один кислородный датчик. Большинство современных автомобилей имеют как минимум два кислородных датчика, один из которых расположен, как правило, после катализатора. Сигнал с посткаталитического (нижнего) кислородного датчика позволяет оценивать качество работы катализатора. Точное расположение кислородного датчика на конкретном автомобиле указывается в техническом руководстве к данному автомобилю.
Почему следует заменить неисправный кислородный датчик?
Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.
Когда кислородный датчик нужно заменить?
Существуют рекомендованные интервалы замены кислородных датчиков, однако межсменные интервалы являются не единственными критериями замены датчиков кислорода. Если имеются признаки повышенного расхода топлива, ухудшение динамики или экологических характеристик работы двигателя необходимо проверит работоспособность кислородного датчика. Следует учитывать, что кислородный датчик изнашивается постепенно, зачастую незаметно для хозяина автомобиля. Кислородные датчики с одним или двумя проводами при эксплуатации автомобиля в Европе или США требуют замены при пробеге в 50000-80000 км. 3- и 4-проводные датчики требуют замены после 100000 км пробега.
Виды кислородных датчиков.
Существует несколько классификаций автомобильных кислородных датчиков:
1. По количеству проводов: 1-,2-,3-,4-,5-,6-контактные датчики.
2. По дизайну сенсорного элемента: “пальчиковые” и пластинчатые
3. По способу крепления в выхлопную трубу: резьбовые и фланцевые.
4. По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).
Принцип работы кислородного датчика.
Принцип работы кислородного датчика – электрохимический. Большинство кислородных датчиков изготавливаются на основе оксида циркония ZnO2 (окислитель) и платины (катализатор химической реакции окислении/восстановления). При работе двигателя выделяются раскалённые выхлопные газы, имеющие сложный химический состав. Основными составляющими их являются азот N2, углекислый газ CO2, кислород O2 и вода h3O. Однако в выхлопных газах содержаться и недоокисленные продукты горения топлива — CO и CH. Именно с недоокисленными продуктами вступает в реакцию окисления/восстановления оксид циркония кислородного датчика. Непременными условиями протекания этих химических реакций является высокая температура (360 градусов Цельсия) и присутствие катализатора (платина). При восстановлении двуокиси циркония ZnO2 в окись циркония ZnO возникает электрический ток, который детектируется на контактах кислородного датчика. Так как окись циркония ZnO, является недоокисленным продуктом, она постоянно стремится окислится в двуокись циркония ZnO2, поэтому при работе двигателя на поверхности кислородного датчика происходит постоянное чередования процессов окисления и восстановления, что детектируется как волнообразное изменение напряжения на контактах кислородного датчика. Напряжение генерируемое кислородным датчиком колеблется на уровне от 100 mV (бедная смесь) до 900 mV (богатая смесь). При оптимальном соотношении топливо/воздушной смеси датчик генерирует напряжение порядка 465 mV.
Количество проводов, которые имеет кислородный датчик, может колебаться от одного до пяти и даже шести. Этот внешний признак отражает особенности внутреннего устройства кислородного датчика.
Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.
Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.
Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами:
1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя;
2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента;
3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание.
Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.
Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.
Что делает кислородный датчик?
Что такое датчик кислорода? Что это делает?
, обычно называемые датчиками O2, являются частью выхлопной системы вашего автомобиля. Датчики, расположенные ниже по потоку, после нейтрализатора, предназначены для отслеживания количества вредных выхлопных газов, поступающих в каталитический нейтрализатор и выходящих из него, для обеспечения правильной работы преобразователя. Датчик фактически не измеряет количество кислорода, а измеряет разницу. между количеством кислорода в выхлопных газах и количеством кислорода в воздухе.Также имеется датчик кислорода на входе, который контролирует выхлопные газы, чтобы помочь компьютеру отрегулировать соотношение топлива и воздуха для максимального расхода газа и мощности.
Богатая смесь (слишком много топлива) требует от датчиков кислорода. Потребность в кислороде вызывает повышение напряжения во внутренней цепи кислородного датчика. Бедная смесь (недостаточно топлива) вызывает низкое напряжение. Изменение сигнала, который кислородный датчик посылает в компьютер двигателя, может привести к повреждению автомобиля, не говоря уже о том, что это крайне незаконно и влечет за собой крупный штраф.Когда двигатель находится под более низкой нагрузкой, такой как замедление ускорения или поддержание постоянной скорости, он работает в режиме замкнутого контура. В то время как в этом режиме компьютер вашего транспортного средства в основном ожидает вашего следующего движения, предполагая, что вы будете ускоряться или замедляться. Этот цикл заставляет двигатель работать как на обедненной, так и на богатой смеси. Поскольку компьютер пытается поддерживать золотую середину, если компьютерные модификации были внесены в двигатель, заставив его работать на умеренно обедненной смеси, будет небольшое увеличение экономии топлива, обычно за счет выбросов, гораздо более высоких температур выхлопных газов и увеличение мощности, которое может быстро перерасти в пропуски зажигания и резкую потерю мощности, а также возможное повреждение двигателя при чрезвычайно обедненном соотношении воздуха и топлива.
Если в результате модификаций двигатель будет работать на обогащенной смеси, произойдет небольшое увеличение мощности до определенного предела (двигатель начинает заливаться из-за слишком большого количества несгоревшего топлива), но за счет снижения экономии топлива и увеличения количества несгоревших углеводородов в выхлопе. который превратит ваши каталитические нейтрализаторы в небольшую печь. Продолжительная работа на богатых смесях может вызвать катастрофический отказ каталитического нейтрализатора. ЭБУ также управляет синхронизацией зажигания двигателя вместе с импульсом топливной форсунки, поэтому модификации, которые изменяют работу двигателя на слишком бедную или слишком богатую, также могут привести к неэффективному расходу топлива, когда топливо воспламеняется слишком рано или слишком поздно в цикле сгорания.Неисправный датчик O2 может вызвать срабатывание контрольной лампы двигателя, а также зарегистрировать неисправный каталитический нейтрализатор, случайные пропуски зажигания в цилиндрах, коды положения распредвала / коленчатого вала и даже коды трансмиссии. Как правило, замена датчика кислорода может сэкономить вам много головных болей и ошибочный диагноз. Плохая экономия топлива, заикание двигателя или неприятный запах тухлых яиц? Это некоторые из распространенных симптомов неисправного датчика кислорода, которые, если их выявить на ранней стадии, могут предотвратить более серьезные повреждения, перечисленные выше.
В компании Lou’s Custom Exhaust of Hyannis, Plymouth, Quincy и Westport у нас есть возможность считывать любой индикатор проверки двигателя и диагностировать причину неисправного датчика, каталитического нейтрализатора или любой другой проблемы с выбросами, которая может быть связана с индикатором проверки двигателя. .
Позвоните нам, если вам нужна бесплатная оценка и бесплатная диагностика контрольных ламп двигателя в любом из наших 4 офисов:
Хайаннис 508-771-2500
Плимут 508-746-3500
Куинси 617-773-6500
Вестпорт 508-646-1500
Лямбда-зонд — до и после
Дополнительные указания
Лямбда-зонд также называется датчиком кислорода или O 2 или датчиком кислорода в выхлопных газах с подогревом (HEGO) и играет очень важную роль в контроле выбросов выхлопных газов на автомобиле с каталитическим нейтрализатором. Датчик Pre-Cat устанавливается в выхлопную трубу перед каталитическим нейтрализатором, а автомобили с новым EOBD2 также имеют лямбда-датчик post-cat.
Датчики имеют различное количество электрических соединений, максимум до четырех проводов. Они реагируют на содержание кислорода в выхлопной системе и производят небольшое напряжение в зависимости от воздушно-топливной смеси, наблюдаемой в данный момент. Диапазон напряжения в большинстве случаев колеблется от 0,2 до 0,8 вольт: 0,2 вольта указывает на бедную смесь и 0.8 В показывает более богатую смесь.
Транспортное средство, оснащенное лямбда-датчиком, называется «замкнутым контуром», что означает, что после сгорания топлива в процессе сгорания датчик анализирует полученные выбросы и соответствующим образом корректирует заправку двигателя.
Лямбда-датчики могут иметь нагревательный элемент, который нагревает датчик до оптимальной рабочей температуры 600 ° C. Это позволяет расположить датчик дальше от источника тепла в коллекторе в более «чистое» место. Датчик не работает при температуре ниже 300 ° C.
Лямбда-зонд состоит из двух пористых платиновых электродов. Наружная поверхность электрода подвергается воздействию выхлопных газов и покрыта пористой керамикой, а внутренняя поверхность с покрытием подвергается воздействию свежего воздуха.
Наиболее часто используемый датчик имеет элемент из диоксида циркония, вырабатывающий напряжение при разнице содержания кислорода между двумя электродами. Затем этот сигнал отправляется в электронный блок управления (ЕСМ), и смесь регулируется соответствующим образом.
Titania также используется в производстве другого типа лямбда-зонда, который обеспечивает более быстрое время переключения, чем более распространенный циркониевый датчик. Датчик кислорода из титана отличается от датчика из оксида циркония тем, что он не может создавать собственное выходное напряжение и, следовательно, зависит от 5-вольтового источника питания от блока управления двигателем автомобиля. Эталонное напряжение изменяется в соответствии с соотношением воздух-топливо в двигателе, при этом обедненная смесь возвращается всего лишь 0,4 В, а богатая смесь дает около 4. 0 вольт.
Контроллер ЭСУД будет управлять подачей топлива в «замкнутом контуре» только тогда, когда позволяют соответствующие условия, что обычно происходит в режиме холостого хода, небольшой нагрузки и крейсерского режима. Когда автомобиль ускоряется, ЕСМ допускает переполнение и игнорирует лямбда-сигналы. Это также происходит во время первоначального разогрева.
Датчики из титана и циркония при правильной работе переключаются примерно раз в секунду (1 Гц) и оба начинают переключаться только после достижения нормальной рабочей температуры.Это переключение можно наблюдать на осциллографе или с помощью напряжения низкого диапазона на мультиметре. На осциллографе результирующая форма сигнала должна выглядеть, как на рисунке выше. Если частота переключения ниже ожидаемой, снятие датчика и очистка его спреем растворителя может улучшить время отклика.
Постоянное высоковольтное выходное напряжение диоксида циркония показывает, что двигатель постоянно работает на обогащенной смеси и находится за пределами диапазона регулировки ECM; тогда как низкое напряжение указывает на обедненную или слабую смесь.
Коммутационное напряжение на датчике пост-каталитического нейтрализатора указывает на то, что газы проходят через керамический монолит каталитического нейтрализатора, не подвергаясь химическим изменениям, и, следовательно, каталитический нейтрализатор требует замены заведомо исправным устройством, при условии, что форма волны перед каталитическим нейтрализатором находится в пределах спецификации .
Типичный циркониевый лямбда-зонд имеет четыре провода. Цвета у разных производителей различаются, но наиболее распространенное расположение показано ниже.
Верхний провод: белый нагреватель (+)
2-й провод: белый нагреватель (-)
3-й провод: черный — сигнал
4-й провод: серый — земля
: как они работают и для чего нужны
Что такое датчик кислорода?Датчик кислорода (обычно называемый «датчиком O2», поскольку O2 — это химическая формула кислорода) установлен в выпускном коллекторе транспортного средства для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигатель.
Контролируя уровень кислорода и отправляя эту информацию на компьютер вашего двигателя, эти датчики сообщают вашему автомобилю, является ли топливная смесь богатой (недостаточно кислорода) или бедной (слишком много кислорода). Правильное соотношение воздух-топливо имеет решающее значение для поддержания плавности хода вашего автомобиля.
Поскольку датчик O2 играет важную роль в работе двигателя, выбросах и топливной экономичности, важно понимать, как они работают, и следить за тем, чтобы ваш датчик работал должным образом.
Где расположены датчики кислорода?Количество кислородных датчиков в автомобиле варьируется.Каждый автомобиль, выпущенный после 1996 года, должен иметь кислородный датчик перед каждым каталитическим нейтрализатором и после него. Таким образом, в то время как большинство транспортных средств имеют два датчика кислорода, двигатели V6 и V8, оснащенные двойным выхлопом, имеют четыре датчика кислорода — один перед каталитическим нейтрализатором и после него на каждом ряду двигателя.
Что делает датчик кислорода?Автомобильный датчик 02 используется для измерения количества кислорода в выхлопных газах и передачи этой обратной связи на компьютер вашего автомобиля.Затем компьютер использует эту информацию для корректировки воздушно-топливной смеси.
Датчики кислорода работают, вырабатывая собственное напряжение, когда они становятся горячими (примерно 600 ° F). На конце датчика кислорода, который подключается к выпускному коллектору, находится циркониевая керамическая груша. Внутренняя и внешняя поверхность колбы покрыта пористым слоем платины, которая служит электродами. Внутренняя часть колбы вентилируется изнутри через корпус датчика в атмосферу.
Когда внешняя часть баллона подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между баллоном и внешней атмосферой внутри датчика вызывает прохождение напряжения через баллон.
Если соотношение топлива бедное (недостаточно топлива в смеси), напряжение относительно низкое — примерно 0,1 вольт. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое — примерно 0,9 вольт. Когда топливно-воздушная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольт.
Верхний кислородный датчик (кислородный датчик 1)Кислородный датчик 1 является верхним кислородным датчиком по отношению к каталитическому нейтрализатору.Он измеряет соотношение воздух-топливо в выхлопе, выходящем из выпускного коллектора, и отправляет сигналы высокого и низкого напряжения в модуль управления трансмиссией для регулирования топливовоздушной смеси. Когда модуль управления трансмиссией получает сигнал низкого напряжения (обедненной смеси), он компенсирует это за счет увеличения количества топлива в смеси. Когда модуль управления трансмиссией получает сигнал высокого напряжения (богатый), он обедняет смесь, уменьшая количество топлива, которое он добавляет в смесь.
Использование модулем управления трансмиссией входного сигнала кислородного датчика для регулирования топливной смеси известно как замкнутый контур управления с обратной связью. Эта работа с замкнутым контуром приводит к постоянному переключению между богатой и обедненной смесью, что позволяет каталитическому нейтрализатору минимизировать выбросы за счет поддержания надлежащего баланса общего среднего отношения топливной смеси.
Однако при запуске холодного двигателя или выходе из строя кислородного датчика модуль управления трансмиссией переходит в режим разомкнутого контура. В режиме разомкнутого контура модуль управления трансмиссией не получает сигнал от кислородного датчика и заказывает фиксированную богатую топливную смесь.Работа в разомкнутом контуре приводит к увеличению расхода топлива и выбросов. Многие новые кислородные датчики содержат нагревательные элементы, которые помогают им быстро достичь рабочей температуры, чтобы минимизировать время, затрачиваемое на работу без обратной связи.
Нижний датчик кислорода (датчик кислорода 2)Датчик кислорода 2 является нижним датчиком кислорода по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо на выходе из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает должным образом.Каталитический нейтрализатор поддерживает стехиометрическое соотношение воздух-топливо 14,7: 1, в то время как модуль управления трансмиссией постоянно переключается между богатой и обедненной воздушно-топливной смесью из-за входного сигнала от верхнего кислородного датчика (датчик 1). Следовательно, нижний кислородный датчик (датчик 2) должен выдавать стабильное напряжение примерно 0,45 В.
Признаки неисправного датчика O2При выходе из строя датчика 02 может появиться множество диагностических кодов неисправности (DTC).В большинстве случаев неисправный датчик O2 приводит к включению светового индикатора двигателя, сопровождаемого кодом неисправности, который вы можете прочитать с помощью сканера OBD2, такого как FIXD. Основываясь на этом коде неисправности, он укажет на причину сбоя, а затем продолжит диагностику.
Симптомы неисправного датчика O2 могут включать следующее:
- На обедненной или богатой смеси
- Плохое ускорение
- Колебания двигателя
- Черный дым из выхлопной трубы (богатый режим работы) черный дым — избыток топлива, выходящего из выхлопной трубы
- Неровный холостой ход
- Автомобиль глохнет
- Пониженная топливная эффективность
Чтобы определить, неисправен ли у вас датчик кислорода илив обедненных или богатых режимах работы первым делом необходимо проверить работу датчика O2 с помощью диагностического прибора.
Как тестировать датчики кислородаПоскольку датчик O2 играет важную роль в поддержании максимально эффективной и чистой работы вашего двигателя, важно убедиться, что он работает правильно. Большинство кислородных датчиков обычно служат от 30 000 до 50 000 миль, или 3-5 лет, а более новые сенсоры служат еще дольше при надлежащем обслуживании и уходе.
Вы можете проверить кислородный датчик дома с помощью вольтметра или диагностического прибора OBD2, такого как датчик FIXD. Перейдите к потоку данных в реальном времени в приложении FIXD, чтобы увидеть напряжение и время отклика ваших датчиков O2.
Обычно передний (передний) датчик O2 1, который работает должным образом, будет переключаться с богатой на бедную смесь с довольно постоянной скоростью, создавая волнообразное образование. Напряжение, генерируемое датчиком O2, должно составлять от 0,1 В до 0,9 В, с 0,9 В на богатой стороне и 0,1 В на бедной стороне. Если ваши показания находятся в этом диапазоне, датчик O2 работает нормально.
Задний (нижний) кислородный датчик 2 является датчиком каталитического нейтрализатора, и, если все работает нормально, этот датчик будет колебаться около половины вольта.Однако это измерение может варьироваться в зависимости от производителя.
Дополнительные советы по тестированию датчика O2Если датчик O2 не реагирует быстро на тестирование:
Если датчик кажется вялым или медленным во время тестирования и есть другие симптомы без кода неисправности, это может быть проблема «ленивого» датчика O2, который может вызвать другие проблемы.
Если напряжение датчика O2 остается богатым или бедным:
Попробуйте ввести противоположное условие, чтобы определить, связана ли проблема с датчиком кислорода или это проблема с топливовоздушной смесью.Например, если ваш датчик O2 заедает бедной смесью, добавьте топлива в ситуацию, чтобы увидеть, сработает ли он. Если датчик O2 находится на стороне богатой смеси, попробуйте создать утечку вакуума или увеличить количество кислорода, чтобы посмотреть, как и реагирует ли датчик.
Будьте в курсе с приложением FIXD Sensor & AppС автомобильным сканером и приложением FIXD вы можете взять под свой контроль уход за автомобилем и сэкономить 1000 долларов. От автоматических предупреждений о техническом обслуживании, отправляемых прямо на ваш телефон, до данных в реальном времени, показывающих уровень топлива, уровни датчика кислорода, напряжение батареи и многое другое, FIXD информирует вас, чтобы вы могли продлить срок службы вашего автомобиля и избежать ненужных дополнительных продаж. Узнайте больше о сканере и приложении FIXD OBD2 сегодня!
Каталитические преобразователи и датчики O2
Скачать PDFКакое сегодня самое важное устройство контроля выбросов в автомобиле? Каталитический нейтрализатор, поскольку он очищает выхлопные газы от выхлопных газов двигателя. Это горячая работа (буквально), которая работает при температурах от 600 до 1000 градусов по Фаренгейту. Пока преобразователь выполняет свою работу эффективно, автомобиль будет соответствовать требованиям по выбросам и пройти как проверку выбросов выхлопной трубы, так и / или тест на выбросы подключаемого модуля OBDII. .OEM-преобразователи спроектированы таким образом, чтобы прослужить более 150 000 миль, но ряд вещей может помешать их способности очищать выхлопные газы, а некоторые могут в конечном итоге привести к выходу преобразователя из строя.
Причины, вызывающие наибольшее беспокойство, включают:
- Пропуски зажигания (загрязненная свеча зажигания и / или закороченный провод свечи)
- Пропуски воспламенения при сжатии (негерметичные клапаны или прокладка головки)
- Внутренние утечки охлаждающей жидкости (трещины в головке или негерметичная прокладка головки)
- Горение масла (изношены направляющие клапана, сальники, кольца, цилиндры)
- Загрязнение топлива (свинец)
- Ржавчина или физические повреждения
Типы КОШЕК
Прежде чем мы продолжим, нам нужно заглянуть внутрь преобразователя, чтобы понять, как он работает. Внутри внешней оболочки из нержавеющей стали находится керамический или металлический сотовый заполнитель, покрытый очень тонким слоем драгоценных металлов. К ним относятся платина, палладий и родий в различных комбинациях. Все эти металлы обладают уникальной способностью запускать химические реакции. Они не расходуются или расходуются с течением времени, а служат только для зажигания реакций между загрязнителями в выхлопных газах и кислородом.
Самые ранние преобразователи, датируемые 1975 годом, были «двухкомпонентными» или «окислительными» преобразователями, поскольку катализатор вступал в реакцию только с углеводородами (HC) и монооксидом углерода (CO) в выхлопных газах.Эти старые преобразователи ничего не сделали для уменьшения содержания оксидов азота (NOX) в выхлопных газах.
В 1980-х годах появились «трехходовые» преобразователи (TWC). Внутри них находятся два катализатора: один для окисления HC и CO, а второй для восстановления NOX. Некоторые из старых конвертеров TWC имеют воздуховод, подключенный к воздушному насосу или клапану аспиратора для подачи воздуха между катализаторами окисления и восстановления. Новым конвертерам TWC не нужен воздуховод, и они используют кислород в выхлопных газах для сжигания загрязняющих веществ.
Для эффективной работы трехкомпонентным конвертерам необходима топливно-воздушная смесь, чередующаяся между богатой и бедной. Богатая топливно-воздушная смесь снижает количество кислорода в выхлопных газах. Это позволяет катализатору восстановления разрушать NOX. Но для сжигания HC и CO катализатору окисления требуется больше кислорода, поэтому топливно-воздушная смесь должна стать обедненной. Это позволяет катализатору на мгновение поглощать кислород и запускать реакцию, которая сжигает углеводороды и CO.
Модуль управления трансмиссией (PCM) переключает воздушно-топливную смесь, когда двигатель прогрет, отслеживая сигнал богатой / бедной смеси от кислородного датчика в выхлопе.Когда датчик O2 показывает бедную смесь, PCM делает топливную смесь богатой. Когда датчик O2 отправляет обратно богатый сигнал, PCM сокращает время включения топливных форсунок и снижает топливную смесь. Затем датчик O2 отправляет обратно сигнал бедной смеси, и PCM увеличивает время включения форсунок, чтобы снова сделать топливную смесь богатой. Путем быстрого изменения топливно-воздушной смеси вперед и назад общая смесь усредняется и сводит выбросы к минимуму.
На некоторых новых автомобилях используется новый тип «широкополосного» кислородного датчика (также называемого датчиком «воздух / топливо»).Вместо того чтобы генерировать сигнал высокого или низкого напряжения, сигнал изменяется прямо пропорционально количеству кислорода в выхлопе. Это обеспечивает более точное измерение для лучшего контроля топлива и сообщает PCM точное соотношение воздух / топливо. В большинстве приложений вы также можете прочитать соотношение воздух / топливо или значение лямбда на вашем диагностическом приборе.
Новые широкополосные датчики воздуха / топлива используются на автомобилях Toyota 1996 года выпуска и новее, а также на Volvo 2.3 л, 2.3 л и 2.8 л и старше 1999 года выпуска, Volkswagen 1 2000 года выпуска и выше. 8 л, 2,0 л, 2,6 л и 2,8 л, 2001 и новее Porsche 911 3.5 л, 2002 VW Passat 4.0 л W8, 2000 и новее Subaru Legacy & Outback 2.5 л и 2002 и новее Audi A4 и Quattro 1.8 л.
Проблемы конвертера
Хорошо, так что мы узнали? Трехходовые преобразователи нуждаются в изменении топливно-воздушной смеси для работы с максимальной эффективностью. Это, в свою очередь, требует наличия хорошего кислородного датчика и включения PCM в «замкнутый цикл», когда двигатель прогрет.
Вы можете проверить состояние контура PCM с помощью диагностического прибора, и вы можете проверить работу кислородного датчика, посмотрев на изменение сигнала богатой / бедной смеси, когда двигатель прогрет и работает.Если у вас нет хорошего сигнала O2 и замкнутого контура, преобразователь не сможет работать с максимальной эффективностью.
Неисправный кислородный датчик, который предотвращает переход PCM в замкнутый контур, не повредит преобразователь, но он может помешать преобразователю максимально снизить содержание углеводородов и CO. Вялый или неработающий кислородный датчик обычно приводит к тому, что двигатель работает на обогащенной смеси, и увеличивает уровень CO в выхлопе.
Неисправный датчик охлаждающей жидкости также может помешать PCM перейти в замкнутый контур при прогреве двигателя.Другие связанные с охлаждением причины, которые могут помешать PCM перейти в замкнутый контур, включают термостат, который застрял в открытом положении, протекает или имеет слишком низкий температурный рейтинг для применения. Если PCM не переходит в замкнутый цикл при прогреве двигателя, воздушно-топливная смесь будет слишком богатой.
Монитор преобразователя
На автомобилях 1996 года и более новых, которые имеют бортовую диагностику II (OBDII), есть «монитор катализатора», который следит за эксплуатационной эффективностью преобразователя.Второй кислородный датчик установлен «ниже по потоку» или позади преобразователя для сравнения уровней кислорода в выхлопных газах до и после преобразователя.
В нормальных рабочих условиях датчик O2 ниже по потоку должен иметь небольшую коммутационную активность. Но если скорость переключения нижнего датчика O2 начинает увеличиваться, это говорит о том, что эффективность преобразователя системы OBDII падает и существует потенциальная проблема с выбросами. Если проблема может привести к выбросу более 1.В 5 раз больше федерального предела загорится контрольная лампа неисправности (MIL), и PCM зарегистрирует диагностический код неисправности для «катализатора ниже пороговой эффективности» (P0420, P0421, P0422, P0430, P0431 или P0432). Суть в том, что у вас плохой преобразователь — если проблема не в другом, например, в плохом кислородном датчике или разомкнутом контуре управления обратной связью по топливу.
Если у вас есть цифровой запоминающий осциллограф с двумя трассами (DSO) и вы хотите подтвердить диагноз, вы можете подключить осциллограф к датчикам O2 в восходящем и нижнем потоках, чтобы сравнить их коммутационную активность. Если активность нижнего датчика O2 соответствует активности верхнего датчика O2, преобразователь неисправен и его необходимо заменить.
Вы также можете подтвердить неисправность преобразователя, сравнив уровни CO и HC в выхлопе в носовой и задней частях преобразователя. Если вы видите небольшое или нулевое снижение уровней HC и CO, значит, преобразователь подошел к концу и его необходимо заменить.
Загрязняющие вещества
Когда другие химически активные вещества попадают в выхлопные газы, они могут вызвать проблемы с катализатором внутри нейтрализатора.К ним относятся фосфор, силикон и свинец.
До 1975 года тетраэтилсвинец использовался для повышения октанового числа бензина и для смазки выпускных клапанов. Когда в 1975 году были добавлены каталитические нейтрализаторы, этилированный бензин постепенно был прекращен. Ограничители топлива были встроены во впускной патрубок заливной горловины, поэтому автомобилисты не могли заправлять этилированный бензин — но многим удалось обойти эти устройства, потому что этилированное топливо было дешевле, чем неэтилированное. В конце концов, этилированное топливо исчезло в США.S. так что это не должно вызывать беспокойства, если кто-то не заправляет машину гоночным топливом или не едет к югу от границы в Мексике.
Фосфор является сегодня основным источником загрязнения конвертера. Фосфор содержится в моторном масле. Как и цинк, который тоже может вызвать проблемы. Обычно эти следы металлов не вызывают проблем. Но в двигателе с большим пробегом с изношенными направляющими, кольцами и / или цилиндрами клапанов сгорание масла может привести к попаданию в выхлопную трубу достаточного количества масла, чтобы засорить преобразователь. Как только это произойдет, ничего не останется, кроме как заменить преобразователь.Проблема в том, что новый преобразователь в конечном итоге постигнет та же участь, что и старый, если не будет также устранена причина возгорания масла, что обычно означает капитальный ремонт или замену двигателя.
Сера — еще один загрязнитель. В небольших количествах он содержится в бензине. Пока концентрация ограничена, это не вызывает проблем. Но слишком много серы в партии плохого бензина может создать запах тухлого яйца в выхлопе и привести к тому, что преобразователь загорится при более высокой температуре, чем обычно, увеличивая загрязнение и, возможно, повредив преобразователь.
Силикон входит в состав традиционных антифризов. Силикон используется для защиты алюминиевых деталей от коррозии. Пока он остается внутри системы охлаждения, он не влияет на преобразователь. Но если через прокладку головки блока цилиндров охлаждающая жидкость начинает просачиваться в камеру сгорания или на головке появляется микротрещина, из которой вытекает охлаждающая жидкость, силикон может попасть в выхлопную трубу и разрушить преобразователь. Как и в случае загрязнения фосфором, перед заменой преобразователя важно устранить источник утечки охлаждающей жидкости, иначе новый преобразователь постигнет та же участь.
Также следует учитывать, что силикон, фосфор и свинец также могут загрязнять кислородные датчики. Если преобразователь вышел из строя из-за загрязнения, кислородные датчики также должны быть проверены, потому что они тоже могут быть загрязнены.
Когда становится слишком жарко
Преобразователь может выдерживать довольно много тепла. Однако высокий уровень выбросов загрязняющих веществ из двигателя вызывает резкое повышение рабочей температуры преобразователя. Это может повредить преобразователь.Если преобразователь перегревается (более 2000 градусов по Фаренгейту), он может расплавить керамические соты внутри корпуса. Результатом может быть частичная или полная блокировка, которая вызывает резкое увеличение противодавления выхлопных газов и большое падение производительности двигателя и экономии топлива. Если преобразователь полностью заблокирован, двигатель заглохнет.
Основные причины здесь включают такие вещи, как засорение свечей зажигания, плохие провода свечи, негерметичные клапаны двигателя или протекающая прокладка головки. Любой из них может позволить большому количеству несгоревшего топлива попасть в выхлоп.Когда HC попадает в конвертер, он воспламеняется, и температура конвертера резко возрастает.
Проверка ограничений проще и не требует специального оборудования. Проблема с ограничением может быть заподозрена, если вашему двигателю не хватает мощности, в последнее время использовалось много газа или он глохнет после запуска и не запускается.
Низкое значение вакуума на всасывании является классическим признаком чрезмерного противодавления, которое может быть связано с засоренным преобразователем. Если значение вакуума падает и двигатель глохнет, возможно, преобразователь засорен.
Запишите показания на холостом ходу, затем удерживайте 2500 об / мин. Игла опустится, когда вы сначала откроете дроссельную заслонку, а затем стабилизируется. Если после этого показания начинают падать, в выхлопной системе создается противодавление.
Вы также можете попробовать измерить противодавление выхлопных газов напрямую. Если в автомобиле есть впрыск воздуха, отсоедините обратный клапан от распределительного коллектора и вставьте манометр. Или снимите кислородный датчик и снимите показания на его отверстии в коллекторе или головной трубе.Обратитесь к спецификациям противодавления для приложения. Вообще говоря, более 1,25 фунтов на квадратный дюйм противодавления на холостом ходу или более 3 фунтов на квадратный дюйм при 2000 об / мин говорят о наличии блокировки.
Испытание «заглушкой» снаружи преобразователя с помощью молотка из мягкой резины покажет, не ослаблен ли катализатор внутри. Внутри монолитного преобразователя не должно быть дребезжания. Если вы это сделаете, это означает, что соты внутри сломаны. Если вы подозреваете засорение, отключите или снимите преобразователь и загляните внутрь с индикатором неисправности.Если вы не видите сквозь соты, преобразователь засорен и его необходимо заменить.
Как и в случае отказов из-за загрязнения, важно диагностировать и устранить причину избытка углеводородов в выхлопе, если вы ожидаете, что новый преобразователь прослужит. Проверьте систему зажигания и компрессию и произведите необходимый ремонт.
Замена
Правила замены EPA довольно строги: ремонтная мастерская не может заменить преобразователь до тех пор, пока на него не истечет гарантийный срок и не будет установлена и задокументирована законная потребность в замене (например, засорение, неудачный тест на выбросы или замена преобразователя). конвертер, который кто-то удалил).Ремонтный центр также должен получить ваше разрешение на ремонт в письменной форме, хранить документы в течение шести месяцев, а старый преобразователь — в течение 15 дней. Новый преобразователь должен быть того же типа, что и исходный, и установлен в том же месте. Эти правила НЕ распространяются на владельца транспортного средства, поэтому вы можете заменить преобразователь самостоятельно, если преобразователь неисправен.
Федеральная гарантия на выбросы загрязняющих веществ на OEM-преобразователи составляет 8 лет или 80 000 миль. Если ваш OEM-преобразователь все еще находится на гарантии, вы сможете получить бесплатную замену у своего нового автомобильного дилера.Если на него не распространяется гарантия, вы можете отнести его в любой ремонтный центр или заменить самостоятельно.
Заменяемые преобразователи должны быть того же типа, что и оригинальные, а для транспортных средств OBD II требуется преобразователь, сертифицированный OBDII. Новый преобразователь также должен быть установлен в том же месте, что и исходный.
Замена датчика кислорода— все, что вам нужно знать
Что такое датчик кислорода?
Большинство современных двигателей имеют два или более кислородных датчика, встроенных в выхлопную систему, где они предоставляют данные для управления подачей топлива и сокращения выбросов.Датчики кислорода измеряют количество кислорода в выхлопных газах, образующихся при сгорании, и передают эти данные на бортовой компьютер. Кислородный датчик, расположенный ближе всего к двигателю и перед каталитическим нейтрализатором, обычно называемый верхним датчиком, является более чувствительным и служит для точной настройки воздушно-топливной смеси. Датчик, расположенный ниже по потоку, самый дальний от двигателя и после каталитического нейтрализатора, оценивает, насколько хорошо каталитический нейтрализатор работает.
Каковы симптомы неисправного кислородного датчика?
Двигатель может не работать, но все равно будет работать.Расход топлива будет заметно меньше, и мы можем заметить пропуски зажигания и неравномерную работу на холостом ходу. Поскольку эти датчики влияют на управление подачей топлива, особенно на расположенные выше по потоку, некачественные датчики будут влиять на другие компоненты двигателя. Датчики кислорода выходят из строя из-за возраста, жары и погоды. Кроме того, утечка охлаждающей жидкости и масла в камеру сгорания также сокращает срок службы датчиков.
Насколько серьезен неисправный датчик кислорода?
Неисправный кислородный датчик не оставит вас на обочине дороги, однако ремонт не следует игнорировать.Плохо работающий двигатель быстрее выйдет из строя и приведет к увеличению затрат на ремонт, особенно в случае выхода из строя каталитического нейтрализатора. Найдите хорошего механика, который специализируется на расходе топлива и выхлопных газах, и назначьте встречу. Большинство кислородных датчиков можно заменить в тот же день, поэтому планируйте потерю автомобиля только на короткое время.
Получите расчетную оценку услуги по замене датчика кислорода в ближайших магазинахКакова типичная стоимость замены датчика кислорода?
- Ориентировочная стоимость запчастей 80–300 долларов
- Ориентировочная стоимость рабочей силы 35–150 долларов США
Ориентировочная общая стоимость 115–450 долларов США
Затраты на ремонт при замене датчика кислорода зависят от сложности датчика и его расположения в выхлопной системе.Датчики кислорода перед каталитическим нейтрализатором будут стоить от 150 до 300 долларов, а датчики за нейтрализатором — от 80 до 150 долларов. Аналогичное разделение будет и в стоимости установки. Доступ к датчикам перед каталитическим нейтрализатором труднее, поэтому оплата труда может стоить 70–150 долларов. Если датчик находится за каталитическим нейтрализатором, затраты на рабочую силу обычно находятся в диапазоне от 35 до 60 долларов.
Имейте в виду, что цены будут зависеть от региона, марки и модели вашего автомобиля. Сэкономьте время, используя Openbay для сравнения цен, а затем запишитесь на прием в квалифицированную ремонтную мастерскую в вашем районе.
Сервисная статья, написанная техническим специалистом ASE
Получите оценки в ближайших магазинахЧТО НЕОБХОДИМО ЗНАТЬ ДОМАШНЕМУ МЕХАНИЧЕСКОМУ ОБОРУДОВАНИЮ О ДАТЧИКАХ O2
Сегодняшние компьютеризированные системы управления двигателем полагаются на данные от различных датчики для регулирования производительности двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, иначе возникнут проблемы с управляемостью, это может привести к повышенному расходу топлива и выбросам.
Одним из ключевых датчиков в этой системе является датчик кислорода. Его часто называют как датчик «O2», потому что O2 — это химическая формула кислорода (кислород атомы всегда путешествуют парами, а не в одиночку).
Первый датчик O2 был представлен в 1976 году на Volvo 240. Автомобили для Калифорнии. получил их следующие в 1980 году, когда правила выбросов Калифорнии требовали более низких выбросов. Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и освещения. грузовики постройки с 1981 года.И теперь, когда правила OBD-II здесь (1996 и более новые автомобили), многие автомобили теперь оснащены несколькими датчиками O2, некоторые целых четыре!
Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислород находится в выхлопных газах, когда выхлопные газы выходят из двигателя. Контроль кислорода Уровни в выхлопе — это способ измерения топливной смеси. Это говорит компьютер, если топливная смесь горит богатой (меньше кислорода) или бедной (больше кислород).
На относительную насыщенность или обедненную смесь топлива может влиять множество факторов. смесь, включая температуру воздуха, температуру охлаждающей жидкости двигателя, барометрическое давление, положение дроссельной заслонки, расход воздуха и нагрузка на двигатель. Есть другие датчики для отслеживания этих факторов, но датчик O2 является основным монитором для что происходит с топливной смесью. Следовательно, любые проблемы с O2 датчик может вывести из строя всю систему.
Компьютер использует вход кислородных датчиков для регулирования топливной смеси, которая называется контуром управления с обратной связью по топливу.»Компьютер реагирует от датчика O2 и реагирует изменением топливной смеси. Это дает соответствующее изменение показаний датчика O2. Это называется «закрытым цикл «, потому что компьютер использует вход датчика O2 для регулирования топливная смесь. Результат — постоянное переключение от богатого к другому. обедненной смеси, которая позволяет каталитическому нейтрализатору работать с максимальной эффективностью, поддержание надлежащего баланса средней общей топливной смеси для минимизации выбросы. Это сложная установка, но она работает.
Когда не поступает сигнал от датчика O2, как в случае холодного двигателя сначала запускается (или датчик 02 выходит из строя), компьютер заказывает исправленный (неизменная) богатая топливная смесь. Это называется операцией «разомкнутого контура». потому что входной сигнал от датчика O2 не используется для регулирования топливной смеси. Если двигатель не переходит в замкнутый контур, когда датчик O2 достигает рабочего состояния температура, или выпадает из замкнутого контура из-за потери сигнала датчика O2, двигатель будет работать слишком богато, что приведет к увеличению расхода топлива и выбросы.Плохой датчик охлаждающей жидкости также может предотвратить попадание системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя, когда решение, переходить ли в замкнутый цикл.
Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение при становится жарко. Внутри вентилируемой крышки на конце датчика, который ввинчивается в Выпускной коллектор представляет собой колбу из циркониевой керамики. Колба покрыта снаружи пористым слоем платины.Внутри колбы две полоски платина, служащая электродами или контактами.
Внешняя часть колбы подвергается воздействию горячих газов в выхлопе, в то время как вентиляция внутри лампы осуществляется через корпус датчика наружу Атмосфера. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе оболочка, чтобы воздух мог попасть в датчик, но датчики O2 нового типа «дышат» через их соединители проводов и не имеют вентиляционного отверстия. Трудно поверить, но крошечный расстояние между изоляцией и проводом позволяет воздуху просачиваться в датчик (по этой причине никогда не используйте смазку для датчика O2. разъемы, потому что они могут блокировать поток воздуха).Удаление воздуха из датчика через провода вместо отверстия в корпусе снижает риск попадания грязи или воды загрязнение, которое может засорить датчик изнутри и вызвать его выход из строя. Разница в уровнях кислорода между выхлопным и наружным воздухом внутри Датчик заставляет напряжение течь через керамическую лампу. Чем больше разница, тем выше значение напряжения.
Датчик кислорода обычно вырабатывает напряжение до 0,9 вольт, когда топливо смесь богатая и в выхлопе мало несгоревшего кислорода.Когда бедная смесь, выходное напряжение датчиков упадет примерно до 0,1 вольт. Когда топливно-воздушная смесь уравновешена или находится в точке равновесия около 14,7 на 1, датчик будет показывать около 0,45 В.
Когда компьютер получает богатый сигнал (высокое напряжение) от датчика O2, он наклоняет топливную смесь, чтобы уменьшить показания датчиков. Когда датчик O2 показания становятся бедными (низкое напряжение), компьютер снова меняет направление, делая топливо смесь богатая.Это постоянное колебание топливной смеси вперед и назад происходит с разной скоростью в зависимости от топливной системы. Скорость перехода медленнее всего на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об. / Мин. Двигатели с впрыском дроссельной заслонки несколько быстрее (в 2–3 раза в секунду при 2500 об / мин), а двигатели с многоточечным впрыском — самые быстрые (От 5 до 7 раз в секунду при 2500 об / мин).
Датчик кислорода должен быть горячим (около 600 градусов или выше) перед запуском. для генерации сигнала напряжения, поэтому многие кислородные датчики имеют небольшой нагрев элемент внутри, чтобы помочь им быстрее достичь рабочей температуры.В Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время продолжительный холостой ход, что может привести к возврату системы в режим разомкнутого контура.
Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода. Старые однопроводные датчики O2 не имеют нагревателей. При замене O2 датчик, убедитесь, что он того же типа, что и оригинал (с подогревом или без него).
Начиная с нескольких автомобилей 1994 и 1995 годов и всех автомобилей 1996 года и новее, количество кислородных датчиков на двигатель увеличилось вдвое. Второй датчик кислорода теперь используется после каталитического нейтрализатора для контроля преобразователей операционная эффективность. На двигателях V6 или V8 с двойным выхлопом это означает до четыре датчика O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя) могут быть использовал.
Система OBD II предназначена для контроля характеристик выбросов двигатель. Это включает в себя наблюдение за всем, что может вызвать выбросы увеличивать. Система OBD II сравнивает показания уровня кислорода датчиков O2. до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопе.Если он не видит изменений в уровне кислорода показания, это означает, что преобразователь не работает должным образом. Это вызовет Контрольная лампа неисправности (MIL) должна загореться.
ДатчикиO2 невероятно прочны, учитывая условия эксплуатации, в которых они живут дюйм. Но датчики O2 изнашиваются и в конечном итоге должны быть заменены. Эффективность датчика O2 имеет тенденцию к снижению с возрастом как загрязняющие вещества. накапливаются на кончике сенсора и постепенно снижают его способность производить Напряжение.Такое ухудшение может быть вызвано различными веществами. которые попадают в выхлопные газы, такие как свинец, силикон, сера, масляная зола и даже некоторые присадки к топливу. Датчик также может быть поврежден окружающей средой. такие факторы, как вода, брызги дорожной соли, масло и грязь.
Поскольку датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси замедляется, что приводит к увеличению выбросов. Это случилось потому что колебание топливной смеси замедляется, что снижает КПД преобразователя.Эффект более заметен на двигателях с мультипортом. впрыск топлива (MFI), чем электронная карбюрация или впрыск дроссельной заслонки потому что соотношение топлива изменяется намного быстрее в приложениях MFI. Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов. И если преобразователь перегревается из-за богатой смеси, он может выйти из строя.Одно исследование EPA показало, что 70% автомобилей, не прошедших сертификацию I / M 240, Тест нужен новый датчик O2.
Единственный способ узнать, выполняет ли датчик O2 свою работу, — это проверить его. регулярно. Вот почему некоторые автомобили (в основном импортные) имеют датчик обслуживания. свет напоминания. Хорошее время для проверки датчика — это когда свечи зажигания измененный.
Вы можете считывать показания датчиков O2 с помощью диагностического прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа так сильно прыгают.Вот где действительно сияет инструмент сканирования на базе ПК, такой как AutoTap. Вы можете использовать графические функции, чтобы наблюдать за изменениями напряжения датчиков O2. Программное обеспечение отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к обедненному).
Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, напряжение изменяется от почти минимального (0,1 В) до почти максимального (0.9v). Создание топливная смесь искусственно обогащена за счет подачи пропана во впускной коллектор должен заставить датчик среагировать почти немедленно (в течение 100 миллисекунд) и перейти на максимальный выход (0,9 В). Создание обедненной смеси путем открытия вакуума Линия должна привести к падению выходного сигнала датчика до минимального (0,1 В) значения. Если датчик не качается вперед и назад достаточно быстро, это может указывать на нужна замена.
Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, это может установить неисправность. код и включите контрольную лампу проверки двигателя или неисправности.Если дополнительная диагностика показывает, что датчик неисправен, требуется замена. Но многие датчики O2, которые сильно испорчены, продолжают работать достаточно хорошо, чтобы не установить код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расход топлива. Следовательно, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает нормально.
Очевидно, что неисправный датчик O2 требует замены. Но может также полезно периодически заменять датчик O2 для профилактических поддержание.Замена изношенного датчика O2, который работает медленно, может восстановить максимальная топливная эффективность, минимизация выбросов выхлопных газов и продление срока службы конвертер.
Необогреваемые 1- или 2-проводные датчики O2 на автомобилях с 1976 по начало 1990-х годов могут быть заменяется каждые 30 000 на 50 000 км. Подогреваемые 3- и 4-проводные датчики O2 на с середины 1980-х до середины 1990-х годов приложения можно было менять каждые 60 000 миль. На Автомобили, оборудованные OBD II (1996 и новее), интервал замены 100000 миль Рекомендовано.
OBDII
Выхлоп
Выхлопной и каталитический нейтрализатор
Выхлопная система и каталитический нейтрализатор предназначены для безопасного отвода выхлопных газов от двигателя, снижения шума двигателя, уменьшения выбросов выхлопных газов и поддержания оптимальной топливной эффективности. Эти газы могут нанести вред вам и окружающей среде, если с ними не обращаться должным образом.Убедитесь, что в передней части выхлопной системы нет отверстий, которые могут привести к плохому контролю за выбросами. И убедитесь, что выхлопные газы не попадают в салон, где они могут вызвать у вас серьезные проблемы, включая головокружение, головокружение и даже смерть.
Выхлопная система и каталитический нейтрализатор обычно не содержат движущихся частей, однако эта система чрезвычайно важна для активного контроля за выбросами выхлопных газов. Коллектор и трубопровод выхлопной системы уносят газы, образующиеся при сжигании топлива и воздуха в камере сгорания двигателя.Датчик кислорода, датчик обратной связи системы управления двигателем, расположенный в передней части выхлопного потока, измеряет, насколько эффективно топливо и воздух сжигались в камере сгорания.
Благодаря точному контролю сигнала датчика кислорода система управления двигателем чрезвычайно быстро регулирует количество топлива, подаваемого в камеру сгорания, обеспечивая максимальную топливную эффективность и создавая смесь выхлопных газов, оптимизированную для очистки каталитическим нейтрализатором.Выхлопные газы проходят через каталитический нейтрализатор, где вредные компоненты выхлопных газов: оксиды азота, углеводороды и монооксид углерода (NOx, HC и CO) превращаются в безвредную воду и диоксид углерода (h3O и CO2).
Когда преобразованные выхлопные газы покидают каталитический нейтрализатор, они проходят через другой датчик кислорода, который сигнализирует системе управления двигателем, насколько эффективно каталитический нейтрализатор смог очистить вредные загрязнители выхлопных газов. Оттуда выхлопные газы проходят через стандартные компоненты выхлопной системы, включая глушитель (глушители), резонатор (ы), трубы и выхлопные трубы.Давайте подробнее рассмотрим некоторые компоненты выхлопных газов и каталитического нейтрализатора и их функции, в том числе то, как каталитический нейтрализатор изменяет химический состав выхлопных газов.
Обзор выбросов выхлопных газов
Выхлопные газы состоят из вредных молекул, но эти молекулы состоят из относительно безвредных атомов. С помощью химии и технологии катализаторов мы можем разделить молекулы после того, как они покидают зону сгорания автомобиля, на безвредные частицы, прежде чем они будут выброшены в воздух.Эти процессы происходят внутри горячего каталитического нейтрализатора.
Катализатор — это просто химическое вещество, которое ускоряет химическую реакцию, не меняя ее и не расходуя в процессе. В каталитическом нейтрализаторе задача катализатора — ускорить расщепление вредных молекул. Катализатор изготовлен из платины или аналогичного платиноподобного металла, такого как палладий или родий.
В каталитическом нейтрализаторе работают два различных типа катализатора: катализатор восстановления и катализатор окисления.Оба типа состоят из керамической структуры, покрытой металлическим катализатором, обычно платиной, родием и / или палладием. Идея состоит в том, чтобы создать структуру, которая подвергает максимальную площадь поверхности катализатора потоку выхлопных газов, а также минимизирует необходимое количество катализатора.
Автомобили OBD II оборудованы трехкомпонентными каталитическими нейтрализаторами. Это относится к трем регулируемым выбросам, которые он помогает уменьшить. Катализатор восстановления — это первая ступень каталитического нейтрализатора.В нем используются платина и родий для снижения выбросов NOx. Когда молекула NO или NO2 контактирует с катализатором, катализатор вырывает атом азота из молекулы и удерживает его, высвобождая кислород в форме O2. Атомы азота связываются с другими атомами азота, которые также прилипают к катализатору, образуя N2. Например: 2NO => N2 + O2 или 2NO2 => N2 + 2O2 2NO => N2 + O2 или 2NO2 => N2 + 2O2. Катализатор окисления — это вторая ступень каталитического нейтрализатора. Он уменьшает количество несгоревших углеводородов и окиси углерода, сжигая их над платиновым и палладиевым катализатором.Этот катализатор способствует реакции CO и углеводородов с оставшимся кислородом в выхлопных газах. Например: 2CO + O2 => 2CO2
Выпускной коллектор
Выпускной коллектор прикрепляется к головке блока цилиндров и забирает выхлопные газы из каждого цилиндра и объединяет их в одну трубу. Коллектор традиционно изготавливается из чугуна. Новые коллекторы могут быть изготовлены из нержавеющей стали, стали или алюминия. Для большинства конфигураций с рядным цилиндром имеется только один выпускной коллектор.На двигателях с V-цилиндровым расположением цилиндров, типичных для двигателей V-6 и V-8, обычно имеется один выпускной коллектор на ряд цилиндров. Выпускные коллекторы работают в экстремальных условиях с быстрыми изменениями температуры, которые могут вызвать растрескивание или ослабление прокладок и соединительных соединений, что приведет к утечкам выхлопных газов.
В некоторых выпускных коллекторах датчик кислорода перед каталитическим нейтрализатором или датчик кислорода перед каталитическим нейтрализатором ввинчивается в центральное место, которое подвергает наконечник датчика кислорода воздействию смеси газов из всех цилиндров.Если эта конструкция используется на двигателях V-6 или V-8, в каждом коллекторе будет датчик кислорода.
Каталитический нейтрализатор
Эта деталь, похожая на глушитель, преобразует вредный оксид углерода и углеводороды в водяной пар и диоксид углерода. Некоторые конвертеры также уменьшают вредные оксиды азота. Преобразователь устанавливается между выпускным коллектором и глушителем.
Каталитический нейтрализатор представляет собой металлический контейнер цилиндрической формы больших размеров, расположенный в потоке выхлопных газов рядом с двигателем. Впускная труба преобразователя соединена с двигателем и вводит горячие загрязненные выхлопные газы из цилиндров двигателя. Выход преобразователя подключен к выхлопной трубе. Когда газы из двигателя проходят через катализатор, на его поверхности происходят химические реакции, разлагающие загрязняющие газы и превращающие их в другие газы, которые можно безопасно возвращать в атмосферу.
Температура, при которой каталитический нейтрализатор начинает работать, составляет около 600 градусов по Фаренгейту, при нормальном рабочем диапазоне около 1400 градусов по Фаренгейту.При добавлении несгоревшего топлива в выхлопные газы рабочая температура преобразователя может сильно повыситься. Если температура достигает 2000 градусов по Фаренгейту или выше, керамические соты начинают разрушаться и ослабевать, и металлы катализатора могут плавиться. Это ускоряет процесс старения и приводит к снижению КПД преобразователя. Когда эффективность преобразователя снизилась до точки, при которой транспортное средство может превышать предел загрязнения, PCM включает лампу проверки двигателя и устанавливает диагностический код неисправности.
Неучтенный перегрев является основной причиной засорения каталитического нейтрализатора. Основной причиной здесь часто является засорение свечей зажигания или пропуск зажигания.
Датчик кислорода (перед или перед кат.)
Все автомобили, оборудованные системой OBD II, используют кислородный датчик для измерения количества кислорода в выхлопных газах. Датчик сообщает компьютеру управления двигателем (PCM), является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).PCM постоянно смотрит на напряжение датчика, чтобы определить, является ли смесь богатой или бедной, и регулирует количество топлива, поступающего в двигатель, чтобы получить правильную смесь для максимальной экономии топлива и низких выбросов. Кислородный датчик устанавливается в выпускном коллекторе или рядом с ним в передней выхлопной трубе.
Датчик кислорода должен быть горячим (600 градусов по Фаренгейту), прежде чем он выдаст надежный сигнал напряжения. Горячие выхлопные газы обеспечивают достаточно тепла, чтобы довести датчик кислорода до рабочей температуры в некоторых рабочих условиях, но не во время других условий, таких как холодный запуск или холостой ход.В это время PCM не использует сигнал датчика кислорода для регулирования топливной смеси. Обычно это приводит к богатой топливной смеси, потраченному впустую топливу и более высоким выбросам. Из-за этих проблем в автомобилях, совместимых с OBD II, в основном используются подогреваемые датчики кислорода.
Подогреваемые кислородные датчики имеют внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры быстрее, чем ненагреваемый датчик. Нагреватель доводит датчик до рабочей температуры в течение от 20 до 60 секунд в зависимости от датчика, а также поддерживает датчик кислорода в горячем состоянии, даже когда двигатель работает на холостом ходу в течение длительного периода времени.
Когда сигнал датчика кислорода или цепь нагревателя разрываются, замыкаются или выходят за пределы допустимого диапазона, PCM обычно устанавливает диагностический код неисправности (DTC) и включает лампу проверки двигателя. Однако кислородные датчики считаются предметами технического обслуживания, которые выходят из строя в результате использования, и их следует заменять в соответствии с рекомендованными производителем интервалами или в случае их ухудшения состояния. Дефектный датчик может продолжать работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива.
Эффективность кислородного датчика имеет тенденцию к снижению с возрастом, поскольку загрязняющие вещества накапливаются на наконечнике датчика и постепенно снижают его способность производить напряжение или быстрые изменения напряжения. Такое ухудшение состояния может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые топливные присадки. Принято считать, что трех- и четырехпроводные датчики O2 с подогревом в приложениях с середины 1980-х до середины 1990-х годов следует менять каждые 60000 миль, а рекомендуемый интервал замены для 1996 года и более новых автомобилей, оснащенных OBDII, составляет 100000 миль.
Датчик кислорода (ниже по потоку или после катушки)
На автомобилях, оснащенных OBD II, один или два дополнительных кислородных датчика устанавливаются внутри или за каталитическим нейтрализатором для контроля эффективности преобразователя. Для каждого нейтрализатора будет установлен один кислородный датчик после каталитического нейтрализатора, если двигатель имеет два выхлопа с отдельными преобразователями.
Нижний кислородный датчик работает так же, как верхний кислородный датчик в выпускном коллекторе.Датчик вырабатывает напряжение, которое изменяется при изменении количества несгоревшего кислорода в выхлопных газах. Сигнал высокого или низкого напряжения сообщает PCM о богатой или бедной топливной смеси.
PCM контролирует эффективность преобразователя, сравнивая сигналы датчика кислорода на входе и выходе. Если преобразователь выполняет свою работу и снижает количество загрязняющих веществ в выхлопных газах, нижний кислородный датчик не должен показывать активности. Если сигнал нижнего кислородного датчика начинает отражать сигнал верхнего кислородного датчика, это означает, что эффективность преобразователя снизилась и преобразователь не очищает загрязняющие вещества в выхлопных газах.Когда эффективность преобразователя, кажется, снизилась до точки, когда транспортное средство может превышать предел загрязнения, PCM включает лампу проверки двигателя и устанавливает диагностический код неисправности.
Глушитель
Глушитель снижает выхлоп до приемлемого уровня. Помните, что процесс горения — это серия взрывов, которые создают много шума. В большинстве глушителей используются перегородки, которые отбрасывают выхлоп, рассеивая энергию и уменьшая шум.В некоторых глушителях также используется набивка из стекловолокна, которая поглощает звуковую энергию при прохождении газов. Внутри глушителя вы найдете обманчиво простой набор трубок с несколькими отверстиями в них. Эти трубки и камеры на самом деле настроены так же тонко, как музыкальный инструмент.