почему происходит и как устранить
Причины возникновения детонации двигателя и способы её устранения
Детонация двигателя является одной из самых тревожных проблем транспортного средства, но не многие знают, что это такое и с чем связано.
В принципе, она возникает, когда смесь воздух/топливо внутри цилиндра неправильно распределяется, что делает неравномерным горение. В нормальных условиях топливо сгорает в цилиндре в процессе смешивания с воздухом и необходимой энергией.
Когда начинается взрыв внутри цилиндра, оно горит неравномерно, что может повредить стенки цилиндра и сам поршень.
Детонация мотора появилась одновременно с рождением двигателя внутреннего сгорания и описывается как автоматическое зажигание газа в камере сгорания.
В первое время не было возможности проверить её действие и бытовало мнение, что всё дело в зажигании.
Тем не менее только в 1940 годах была проверена теория её возникновения, возможность обнаружения и последующие действия устранения этого явления.
На современных агрегатах установлен датчик детонации, который способен контролировать уровень опасности. Это устройство воспринимает, а в дальнейшем преобразовывает механическую энергию колебаний цилиндров в электрический импульс.
По сути, датчик постоянно посылает сигналы в электронный блок управления двигателем, а сам блок следит за изменениями состава смеси и угла опережения зажигания.
С его помощью также можно достигнуть более экономичной работы при максимальной мощности двигателя.
С чего начинается детонация
На видео показано, что такое детонация двигателя:
Когда двигатель переходит в детонацию, слышится громкий шум. Поскольку её последствия очень печальны, важно определить, что является причиной такого взрывного горения горючей смеси. Чтобы устранить проблему, возможно, нужно изменить работу двигателя, в противном случае она может его разрушить в короткий промежуток времени.
Характерный звук от двигателя в процессе этого явления обусловлен давлением волны в случае сгорания от вибрации стенок цилиндра. Газ и форма, размеры и толщина камеры сгорания и стенки цилиндра определяют высоту звуковой волны.
Даже если выключить зажигание, под воздействием энергии коленчатый вал продолжает движение, что приводит к попаданию топлива в цилиндр мотора, а там оно успевает нагреться до такой температуры, что само по себе воспламеняется.
На видео рассказано о причинах детонации двигателя:
Детонация двигателя имеет один из самых разрушительных эффектов в любом агрегате. Поэтому нужно немедленно узнать, как устранить её, обнаружив следующие причины взрывного горения в цилиндрах:
Обратите внимание, что каждая из этих возможных причин является относительной. То есть нет абсолютного времени, смещения силы или опережения зажигания, что гарантируют появление детонации. Равным образом не существует никаких абсолютных параметров, которые гарантируют, что такого явления не произойдёт.
Слишком низкое октановое число топлива в автомобиле
Октановое число топлива
Одной из причин детонации двигателя является низкое качество и низкое октановое число топлива, которое может вызвать целый кластер проблем, таких как повышенная температура камеры сгорания и более высокое давление в цилиндрах.
Октановое число показывает, какую степень сжатия может переносить бензин — чем выше рейтинг, тем топливо более устойчиво к возгоранию. Вот почему более сложные двигатели высокого давления требуют более дорогого топлива.
Октановое число бензина иногда называют антидетонационным индексом. Производители рекомендуют определённый вид смеси для достижения максимальной производительности в своих транспортных средствах.
Эти проблемы могут привести к предварительному зажиганию, а это приводит к тому, что топливо сгорает в двигателе раньше, чем следовало бы. Есть два способа, когда бензин может воспламениться в камере сгорания: от свеч зажигания или от неправильной степени сжатия.
Это хрупкое равновесие и любой фактор может испортить весь процесс. Если сжатие двигателя является слишком низким, это приводит к тому, что топливо не сгорает полностью, а оставшиеся компоненты прилипают к внутренним частям камеры.
Это накопление отрицательно влияет на цилиндры, что является распространённой причиной взрывного горения.
Нагар на стенках цилиндра
Нагар на стенках цилиндра
Все виды топлива должны иметь определённый уровень очистки, однако этого может быть недостаточно, чтобы остановить отложения нагара. Когда образуются отложения, объём цилиндра эффективно уменьшается, что увеличивает сжатие, которое может вызвать детонацию. Для борьбы с ним сначала попробуйте приобрести моющие присадки в магазине автозапчастей, а затем изменить топливо.
Неправильные свечи зажигания
Использование неправильных свечей зажигания является ещё одной причиной детонации двигателя. Водители часто не понимают рекомендаций производителя, покупая неправильные приборы зачастую с целью экономии.
Поскольку свечи зажигания помогают контролировать внутреннюю среду двигателя и работают в довольно точных условиях, неправильно подобранные создают условия для неправильного сжигания топлива.
Они могут привести к наращиванию сгорания в камере и повышению температур ходовых частей, которые являются одними из причин возникновения детонации.
Эти три причины являются наиболее распространёнными, а в плане исправления ситуации — наименее дорогостоящими. Если ваш автомобиль по-прежнему имеет детонацию в двигателе после устранения этих причин, оправляйтесь в автосервис.
Как устранить детонацию
На видео рассказано, как можно устранить детонацию двигателя:
http://www.youtube.com/watch?v=ig4F4bx5QOk
Разобравшись, что такое детонация и какие наиболее вероятные причины её возникновения, займёмся тем, как устранить это взрывное горение горючей смеси.
Более высокая скорость помогает снизить вероятность её появления, потому что она сокращает время сжигания. Максимальное давление, следовательно, уменьшается и смесь воздух/топливо не будет подвержена воздействию высоких температур.
Примером этому является тот случай, когда вы ведёте свой автомобиль по прямой ровной дороге с холма. Когда вы снова едете в гору, вы начинаете терять скорость и иногда можете услышать, как ваш двигатель детонирует.
Таким образом, чтобы получить ускорение, вы переключаетесь на одну-две передачи ниже и ускоряетесь снова, тем самым убирая такое явление.
Повышение влажности на самом деле также снижает риск детонации. Высокое содержание воды в воздухе способствует снижению температуры горения.
На видео показано, как происходит детонация дизельного двигателя:
Детонация двигателя не новая проблема, производители пытались устранить или уменьшить её возникновение на протяжении многих лет. Это сложный процесс, что включает в себя множество различных факторов, но чтобы по-настоящему понять, как работает двигатель, вы должны понять, отчего происходит детонация, и изучить шаги, которые ей способствуют.
Хотя детонация может быть потенциально опасной для двигателя, ею легко управлять, как только вы поймёте причину возникновения.
Детонация двигателя: причины появления и способы устранения
Детонация двигателя явление не из приятных. Причины детонации мы разберем в конце статьи, а сначала давайте разберемся в том, что такое детонация, и что при ней происходит с двигателем.
Нормальное сгорание топлива в цилиндре, это химическое взаимодействие, протекающее в смеси паров бензина с воздухом. Для того чтобы процесс начался, мало просто перемешать горючее с воздухом в нужной пропорции, этому веществу необходимо еще дать необходимую энергию.
В дизельных двигателях для этого создается очень высокое давление на горючую смесь и температура в конце такта сжатия способствует воспламенению топлива. В бензиновых моторах смесь необходимо поджечь искрой, которая создается при помощи автомобильной свечи. Сформировавшееся пламя распространяется от электродов автомобильной свечи к стенкам всей камеры сгорания.
От сжатия горючая смесь тут же воспламеняется. Проще говоря, эта волна и есть детонация, скорость ее распространения в цилиндре двигателя достигает порядка 1000 м/с. Это в несколько раз быстрее обыкновенного фронта огня. При этом вы можете слышать металлический звук.
Это явление проявляется, как правило, при средних и больших оборотах мотора. Слабая и кратковременная нагрузка не оказывает серьезного вредного воздействия. Кроме того, чем ближе обстоятельства сгорания в моторе к детонации, тем выше его КПД.
Последствия детонации двигателя
Сильная детонация губительно действует на детали камеры сгорания. По сути, детонация – это взрыв, и несложно догадаться, что вследствие этого происходит механическое разрушение деталей двигателя.
При длительной и сильной детонации может быть испорчен и поршень, и шатун, другие элементы КШМ. Так же негативному воздействию подвергаются клапаны и другие элементы ГРМ. И конечно же цилиндры подвергаются сильнейшему негативному воздействию.
Детонация двигателя при выключении
После того как выключили зажигание, мотор автомобиля может временами продолжать работать, то есть «дергается». Частота вращательных движений коленчатого вала то увеличивается, то уменьшается.
И происходящее в камере сгорания напоминает процесс самовозгорания топлива в дизельном двигателе. Это явление называется «дизелинг».
Не нужно его путать с детонацией, это другое явление и ничего общего с детонацией не имеет.
Дизелинг появляется при некорректной регулировке холостого хода. В случае если система загрязнена и смесь обогащают принудительным способом, путем закручивания винта количества. Свыше меры приоткрывают заслонку первой камеры, при этом получается, что всегда работает главная дозирующая система. Это так же может служить причиной детонации на холостых оборотах.
Причины возникновения детонации в двигателе
Причиной детонации в современных двигателях, включая ВАЗ, чаще всего является низкое качество топлива и количество примесей в нем.
Прежде чем ехать в сервис попробуйте сменить заправку. Если детонация не исчезнет, то необходимо проверить работу топливной системы с помощью компьютерной диагностики.
Так же необходимо обратиться в сервис в том случае, если детонация сильная.
Помимо низкого качества топлива причиной детонации может стать:
- низкое октановое число используемого топлива
- грязный топливный фильтр
- плохо работающие форсунки
- неполадки в работе топливного насоса
- неисправный кислородный датчик
- использование неподходящих свечей зажигания
- неисправность системы охлаждения двигателя
- неисправность блока управления работой двигателя
То есть причин много, но большинство из них можно определить только лишь с помощью специального диагностического оборудования.
Что делать, если двигатель детонирует?
Детонация, как правило, возникает при определенных режимах работы двигателя, характеризующихся высокими оборотами двигателя и повышенной нагрузкой.
Это может быть резкий старт с места, движение в гору, движение с полной загрузкой и т.д.
Для борьбы с детонацией в современных двигателях используется специальный датчик, который так и называется датчик детонации. Он отслеживает параметры работы двигателя, и в случае появления детонации изменяет режим работы двигателя за счет изменения состава топливной смеси и параметров угла опережения зажигания.
Однако, если во время движения вы заметили, что двигатель детонирует, то первым делом необходимо изменить стиль вождения. Как можно плавнее нажимая на педаль газа старайтесь так же плавно трогаться, снизьте скорость движения, преодолевайте подъемы на пониженной (по сравнению с обычным режимом) передаче.
При первой же возможности залейте в бак гарантировано хороший бензин, купленный на официальной заправке того же Лукойла или BP. Если детонация не прекратится, то езжайте в сервис на диагностику.
Детонация двигателя, причины детонации двигателя, как устранить детонацию. Основные причины детонации мотора. Причины детонации мотора и методы ее устранения
Детонация мотора — одна из наиболее тревожных проблем автомобиля. Однако, большинство автолюбителей даже не представляет, что это за процесс и почему возникает.
По сути, возникает детонация при неправильном распределении смеси «воздух-горючее» внутри цилиндра, что делает неравномерным горение. В оптимальных условиях горючее сгорает в цилиндре при смешивании с необходимой энергией и воздухом.
Когда внутри цилиндра возникает взрыв, оно горит неровно, что способно повредить сам поршень и стенки цилиндра.
Детонация, что это такое
Детонацией мотора называют процесс самопроизвольного возгорания топливной смеси в цилиндрах, что носит характер взрывной волны.
Появилась она одновременно с мотором внутреннего сгорания и описывают ее в качестве автоматического зажигания газа в камере сгорания. Изначально проверить действие детонации было невозможно и считалось, что вся проблема в зажигании. Однако уже в 1940-х годах теория ее возникновения была проверена.
Датчик детонации, где находится и о чем сигналит
На современных аппаратах вмонтирован датчик детонации, что способен осуществлять контроль над уровнем опасности.
Данный прибор воспринимает, после чего преобразовывает в электрический импульс механическую энергию колебаний цилиндров.
В действительности, датчик все время посылает сигналы в электронный блок управления мотором, когда сам блок контролирует изменения угла опережения зажигания и состава смеси.
Кроме того, благодаря ему можно достигать максимально экономичной работы при большой мощности мотора.
Признаки детонации, на что должен обратить внимание водитель
Когда мотор переходит в детонацию, слышен сильный шум. Так как ее последствия довольно печальны, необходимо диагностировать причину данного взрывного горения топливной смеси. Для устранения проблемы, возможно, необходимо изменить работу мотора, иначе она способна его разрушить на протяжении короткого промежутка времени.
Специфический звук от мотора в процессе такого явления вызван давлением волны от вибрации стенок цилиндра в случае сгорания. Высоту звуковой волны определяют форма и газ, толщина и размеры камеры сгорания, а также стенки цилиндра.
Детонация мотора на холостом ходу способна произойти после прохождения автомобилем условий, что способствуют повышению нагрева элементов силового агрегата. Если даже зажигание выключить, коленчатый вал под влиянием энергии продолжает движение, которое приводит к попаданию горючего в цилиндр двигателя, где оно успевает нагреться до высоких температур и воспламеняется само по себе.
Причины детонации двигателя
Детонация мотора имеет один из наиболее разрушительных эффектов в каком-угодно агрегате.
Именно по этому необходимо срочно узнать способы устранения проблемы, после обнаружения следующих причин взрывного горения:
Стоит знать, что данные причины являются относительными.
Не существует абсолютного времени, опережения зажигания или смещения силы, которые гарантируют появление детонации. Однако и нет совершенно никаких абсолютных параметров, какие гарантируют, что данное явление не произойдет.
Существует масса причин появления детонации двигателя, мы рассмотрим наиболее распространенные.
Низкое качество топлива, одна из причин детонации
Одной из самых популярных причин детонации мотора является низкое октановое число и низкое качество горючего, которое способно вызвать множество проблем, таких как чрезмерно высокое давление в цилиндрах и повышенная температура в камере сгорания.
Октановое число отображает, какую степень сжатия сможет перенести бензин — чем рейтинг выше, тем горючее устойчивее к возгоранию.
Именно по этому более сложным моторам высокого давления необходимо более дорогое горючее. Иногда октановое число горючего называют антидетонационным индексом.
Изготовители советуют определенный вид смеси, что бы достигнуть в своих автомобилях максимальной производительности.
Такие проблемы способны привести к предварительному зажиганию, что, в свою очередь, влечет за собой преждевременное сгорание топлива в моторе. В камере сгорания бензин способен воспламениться в результате неправильной степени сжатия или от свеч зажигания.
Любой фактор и такое хрупкое равновесие способно испортить весь процесс. Слишком низкое сжатие мотора приводит к тому, что горючее не сгорает полностью и оставшиеся элементы прилипают к внутренним отделам камеры.
Такое накопление оказывает на цилиндры отрицательное влияние, что является частой причиной взрывного горения.
Нагар в цилиндрах, вторая причина детонации
Все виды горючего имеют определенный уровень очистки, но этого бывает недостаточно для остановки отложения нагара. Когда отложения образуются, эффективно уменьшается объем цилиндра, сжатие увеличивается и способно вызвать детонацию. Для решения проблемы необходимо купить в автомагазине моющие присадки, после чего изменить горючее.
Свечи зажигания, как свечи зажигания влияют на возникновение детонации
Еще одна причина детонации мотора — применение неправильных свечей зажигания. Довольно часто автолюбители покупают неправильные устройства, как правило, с целью экономии, тем самым, не придерживаясь рекомендаций изготовителя.
Так как свечи зажигания дают возможность осуществлять контроль над внутренней средой мотора и работают в достаточно точных условиях, неверно подобранные свечи способны создать условия для неправильного сгорания горючего.
Они способны привести к повышению температуры ходовых частей и к наращиванию сгорания в камере, которые являются основными причинами возникновения детонации.
Выше описанные причины являются самыми распространенными и достаточно недорогими в плане исправления проблемы. Однако если в вашем транспортном средстве после устранения данных причин детонация в моторе все же присутствует, необходимо отправиться в автосервис, где ваша проблема будет решена быстро и эффективно.
Детонация двигателя, как предотвратить и устранить детонацию
Высокая скорость движения дает возможность снизить вероятность появления детонации, так как она уменьшает время сжигания. Следовательно, уменьшается максимальное давление и высокие температуры не будут оказывать свое воздействие на смесь воздух-топливо.
Например, если вы ведете свое транспортное средство с холма по ровной прямой дороге. Когда вы опять будете ехать в гору, то начнете терять скорость и иногда можно услышать, как мотор автомобиля детонирует.
Для получения ускорения, вы переключаете передачу ниже на одну или две позиции и ускоряетесь вновь, убирая данное явление.
На самом деле повышение влажности также сокращает риск детонации. Снижению температуры горения способствует высокое содержимое воды в воздухе.
Что бы получить максимальную производительность без детонации автомобилисты используют следующие трюки:
Советы профессионалов
Детонация мотора является не новой проблемой, на протяжении многих лет производители пытались устранить ее возникновение.
Хотя процесс детонации довольно сложный и потенциально опасный для мотора, поняв причины детонации, ею можно легко управлять.
Посторонние стуки и шумы, исходящие от вашего двигателя могут указывать на детонацию, по этому необходимо своевременно обратить на них внимание и немедленно убрать их.
Детонация двигателя Ваз, причины детонации инжекторного и карбюраторного двигателей
Содержание:
Все без исключения автомобили ВАЗ, начиная от модели 2101 и заканчивая современными версиями, оснащаются бензиновыми силовыми установками, которые являются более приоритетными у всех автомобильных производителей.
Нормальное функционирование любого бензинового мотора обеспечивается рядом факторов – соблюдением правильной пропорции топливовоздушной смеси, качеством бензина, соответствующим углом опережения зажигания, состоянием ЦПГ. При несоответствии хоть одного из этих факторов возможно появление такого негативного эффекта как детонация.
Детонация – что это такое
Детонация – это просто неправильное сгорание смеси. Но если вовремя не предпринять мер, то детонация двигателя ВАЗ может иметь сильные негативные последствия. Особенность этого эффекта кроется в самовоспламенении горючей смеси за счет воздействия высоких температур и давления в цилиндрах.
При нормальной работе двигателя сгорание горючей смеси проходит в три этапа.
Эти волны приводят к разрушению пристеночных слоев газов, что обеспечивает повышение теплообмена, из-за чего стенки цилиндров и другие составляющие ЦПГ перегреваются.
Также взрывная волна разрушает масляную пленку стенок, в результате чего повышается трение между цилиндрами и кольцами.
Детонация имеет и механическое воздействие на элементы поршневой группы – резкое возрастание давление приводит к появлению ударных нагрузок на днище поршня, клапана, стенки цилиндров, приводя к их повреждениям.
На рисунке показано, как происходит нормальное и детонационное сгорание топлива.
Слева – нормальное сгорание; справа – детонационное сгорание
Причины возникновения
Если рассматривать этот эффект только на двигателях автомобилей ВАЗ, то возникнуть он может на любом из них – и морально устаревшем моторе модели 2106, и современной установке той же версии 2114 и др.
Есть определенные причины возникновения детонации ВАЗ, и они таковы:
- Несоответствие пропорций горючей смеси. У чрезмерно обогащенной горючей смеси после попадания в цилиндр из-за воздействия высоких температур в отдаленных уголках камеры сгорания возможно возникновение окислительных процессов, которые и являются первопричиной детонации;
- Нарушение угла опережения зажигания. При увеличении угла все процессы в цилиндрах проходят еще до подхода его к ВМТ. Отсюда и высокое давление с температурой, и появление химических реакций с частью смеси.
- Октановое число. Чем оно ниже, тем выше вероятность появления детонации. Объясняется это все тем, что низкооктановый бензин больше подвержен вступлению в реакции.
- Высокая степень сжатия. Повышение этого параметра выше нормы приводит к увеличенным показателям давления и температуры в цилиндрах, которые и являются катализаторами появления реакций.
Все описанные факторы появления такого эффекта одинаковы для всех бензиновых моторов, поэтому причины детонации карбюраторного двигателя те же, что и инжекторного.
Детонация и калильное зажигание
Бывают случаи, когда возникает детонация при выключении зажигания ВАЗ-2106 или любой другой версии. То есть, силовая установка продолжает самостоятельно работать даже после того как прекращена подача искры.
Здесь тоже происходит процесс самовоспламенения, но проходит он несколько по другим причинам. Такое воспламенение происходит от каких-то чрезмерно нагретых элементов ЦПГ. Этот эффект носит название «калильное зажигание», и это уже не детонация двигателя ВАЗ-2106.
Не стоит путать эти два понятия, поскольку они совершенно разные.
Статья в тему — Как бороться с калильным зажиганием
Последствия. Методы борьбы
Детонация карбюраторного двигателя сопровождается появлением металлического стука, особенно под нагрузкой. Многие воспринимают его как «звон пальцев» поршней, однако четкий звук, как будто происходит удар металла о металл, происходит из-за взрывной волны.
Последствия этого эффекта, если не предпринять мер – очень серьезны. Перегрев составляющих частей может привести к пробою головки блока.
Отсутствие масляной пленки, которая
Детонация двигателя что это? Причины детонации и профилактика
Для автолюбителей детонация в двигателе может привести к очень неприятным последствиям, например, к преждевременному износу важных составных элементов, например, детали цилиндро-поршневой группы, а также прокладки головки цилиндрического блока и других составляющих внутренностей, прячущихся под капотом. Именно поэтому лучше узнать какие причины детонации двигателя могут привести к быстрому износу и вынудят хозяина авто вести свою четырехколесную любимицу в автосервис.
Рассказываем, что такое детонация в двигателе, как ее избежать и какую заботу нужно проявлять к мотору, чтобы превентивно избежать растрат на новые комплектующие и держать имущество в рабочем состоянии весь эксплуатационный период.
Детонация что это такое?
При определенных обстоятельствах топливовоздушное вещество может воспламеняться гораздо раньше, чем свечи возгорания искру. Это приводит к тому, что бензин сгорает гораздо быстрее, чем при правильной работе. Такая быстрота в сжигании масла связана с возгоранием всего объема одновременно, а не поэтапно как от свечей. Причины детонации двигателя кроются и в том, что возгорание стартует раньше, чем коленчатый вал успеет встать на правильный расчётный угол и продолжает свое движение к верхней мертвой точке. Образованные газообразные вещества быстро расширяются, а поршень начинает их сжимать. Результатом будет давление, которое появляется в камере, не соответствует нормальным эксплуатационным значениям. Кроме того, образованная небольшая ударная волна появляется от крохотного взрыва наносит ущерб стенкам цилиндра, а заодно и днищу поршневого механизма. Это сопровождается непривычными звуками, которые неопытные гонщики обычно принимают за легкий стук или приемлемый гул от движка.
Каковы причины детонации двигателя?
Небольшие взрывы могут сопровождать движок у всего транспорта не только старого повидавшего длительные пробеги, но и совершенно новенькие модели могут страдать от детонирования. Отличие, что на современных моделях устанавливают диджитализированные датчики, способные вовремя предупредить владельца о надвигающейся опасности, но такое чудо инновации встречается только на инжекторных силовых моторах. Плюсы этого прибора — он передаёт сигнал бортовому компьютеру информацию о состоянии внутренностей капота, чтобы регулировать работу внутренних механизмов. Движки нового поколения действуют при высоких условиях сжатия, это значительно увеличивает риск поломки, и вызывает причины детонации двигателя.
Не редкость, когда маячок предупреждающий о неисправности не корректно работает, и узнать о происшествии можно лишь постфактум в салоне автомастерской.
Теперь выясним то, какие наиболее популярные причины детонации двигателя приводят к скорому изнашиванию деталей.
- Неподходящее топливо или его низкое качество.
- Упреждение свечей зажигания избыточно большое.
- Износ воздушно топливной смеси.
- Загрязнение стенок цилиндрического блока нагаром.
- Свечки не подходят под требования системы, низкокачественные или банально не подходят по характеристикам.
- Мотор перегревается из-за поломки охладительного комплекса.
Теперь перейдем к рассмотрению пунктов детальнее. Чтобы выяснить каковы причины детонации двигателя.
Не то октановое число или плохое качество горючего
Причины детонации двигателя случаются из-за попадания в моторный отсек, бензина с охлаждающей жидкостью, которое не подходит, из-за этого мини-взрывы будут неизбежны событием. Те, кто производит автомобиль, рассчитывают степень сжатия для определенного вида бензина, поэтому если использовать горючее не с тем октановым номером и к тому же пытаться покормить свой автомобиль низкокачественным горючим.
Настройка зажигания произведена некорректно
Чтобы повысить производительность и ускорить своего четырехколесного друга, знатоки меняют стандартную настройку всего механизма запаливания. Но они забывают, что, когда угол опережения увеличенный, то искра будет подаваться скорее, и сжигание горючего наступит в тот момент, когда оно еще не полностью смешалось с воздушной смесью.
Свечи запаливания не правильно работают
Причины детонации двигателя могут проявляться не в тех зажигательных свечах, которые подходят для этой модели. Проблема заключается в том, что инженер мотора не рассчитывал, что на его изобретение будут ставить зажигательные приборы низкого качества или просто несовместимые по параметрам с деталью. Из-за этого искра генерируется не в тот момент в который требуется это и является отправной точкой для возгорания топливовоздушной смеси.
Износ топливовоздушного компонента
Чтобы сэкономить, многие авто любители намеренно лишают топливовоздушную смесь полезных микроэлементов. Так как в конечном продукте отсутствует нужная концентрация паров, искра физически не может воспламенить обеднелое вещество. А при следующем зажигании наоборот, пары превышают допустимую норму. Чересчур богатый состав на микроэлементы наоборот может начать воспламеняться раньше, чем начнется сжатие цилиндра.
Нагарная грязь на внутренней поверхности цилиндрической емкости
Не редко внутренняя гигиена внутренностей капота, а именно моторного отсека, может повлиять на его неприятное разрушение. Причины детонации двигателя случаются из-за того, что на стенках камеры сгорания, образуется большое количество нагара, из-за сильного нагревания налет на поверхности превращается в фитиль, зажигания, которого приведёт к небольшому взрыву топливовоздушного вещества. А еще он увеличивает сжатие, что в совокупности с неправильным октановым значением воспламенит горючее из-за повышенного температурного сжатия.
Охладительный комплекс работает некорректно
Причины детонации двигателя проявляются и в плохой работе охладительной системы. Эта неполадка проявляет себя, когда происходит разгон моторчика. При сильной нагрузке движок перегревается, а отсек сгорания накаляется как следствие — горючее воспламеняется
Что часто путают с детонацией?
В автомобильной инженерии существует такой термин как «калильное зажигание». Автомобилисты заблуждаются из-за того, что при калильной ситуации ДВС еще работает и в тех условиях, когда зажигание находится в выключенном состоянии. Но это совсем не проблема, о которой говорится в данной статье, это всего лишь топливовоздушная смесь, которая возгорается из-за нагретого мотора, но это не причины детонации двигателя.
Дизелинг — тоже проблема, которую воспринимают за детонирование, но на самом деле нет. Это явление сопровождается недолгой работой мотора, даже когда уже выключено зажигание и использование масла несоответствующего детонационной характеристике. Это в свою очередь приводит к тому, что состав самовозгорается.
Причины детонации двигателя видео
Методы профилактики
Причины детонации двигателя были выяснены, теперь узнаем о том, как относиться в составляющим машины, чтобы она служила долго. Ультимативное решение — это избавиться от первопричин.
Сейчас расскажем, как их найти, какие нюансы учитывать при уходе за имуществом. Поговорим о распространенных методах борьбы с детонацией.
- Использование горючего считаясь с параметрами, предложенными компанией производителем. В большинстве ситуаций это касается октанового числа, не рекомендуется использовать его с заниженными характеристиками. Стоит пользоваться услугами проверенных автозаправок с качественным бензином. На непроверенных заправках производители могут замешивать в состав топлива пропан или другой газ низкого качества. И хотя это повышает октановые значения, но совсем ненадолго, потенциально это больше навредит, хотя и поможет сэкономить денег.
- Другой профилактический метод — это установить механизм позднего зажигания. Статистические данные указывают на то, что причины детонации двигателя кроются в свечах зажигания.
- Еще одним профилактическим методом будет выполнение раскоксовки. Суть заключается в том, чтобы почистить движок от нагара и грязи. Это легко сделать самому, в гараже используя средства для раскоксовки моторного отсека.
- Сделать небольшую ревизию и проверить охладительную систему. Уделите внимание радиатору, фильтрам и мелким патрубкам. Не стоит забывать про антифриз, ведь его свойства постепенно тоже деградируют, поэтому необходимо вовремя его поменять.
- У дизельных движков нужно скорректировать угол впрыска масла.
- Относиться добросовестно к своему транспортному средству и не подвергать его критическим условиям. Например, не стоит менять рычаг коробки передач на большие скорости, когда езда медленная.
- Другой превентивной мерой будет забота о внутренностях капота. Рекомендуется часто проверять движки и следить за его сохранностью, менять масло и предотвращать перегрев. Профессиональные автолюбители рекомендуют хитрый прием. Его суть в том, чтобы дать поработать моторчику на повышенных оборотах и на средней передаче. В результате движок очистится от грязи и мелкой мишуры, которая препятствует нормальной работе.
- Причины детонации двигателя часто связаны с горячим перегретым мотором. И чаще всего это происходит на двигателе, который работает на малых мощностях. Эксплуатируйте его на средних оборотах это значительно поможет сохранить срок его изнашивания.
- Датчик — это тоже важный элемент, который помогает избежать дальнейших проблем и вовремя предотвратить опасность поломки детали. Но как проверить исправность самого прибора? Первый метод с помощью популярного мультиметра, его используют в элеткронике, подойдет даже старый, советский. Нужно поставить его в режим работы измерения сопротивления электричеству. Затем — убрать фишку от датчика измерения риска воспламенения, а вместо нее подсоединить антенны от мультиметра. Теперь на дисплее прибора видны цифры сопротивления. Спустя несколько секунд эти значения возвращаются в привычное состояние. Если ничего такого не происходит, измеритель сломан и требует замены или починки.
- Другой метод легче в реализации. Для него стоит включить мотор, а его обороты держать на уровне 2000 в минуту. Затем следует открыть капот и, используя молоток, слегка ударить место крепления датчика для измерения уровня детонирования. Прибор, у которого все хорошо, и он работает правильно, будет воспринимать эту атаку, как мини взрыв и немедленно оповестит электронный блок управления. А если нет, тогда он неисправен и его следует менять. При монтировке нового измерителя обращайте особое внимание на контакт между ним и системой управления, он должен быть крепким и надежным, а иначе его работа будет некорректной. Эти хитрые приемы помогу сохранить транспортное средство в рабочем состоянии и подарить еще много тысяч пробега в будущем.
Одно из решений проблемы детонации на карбюраторном автомобиле видео
Хороших дорог!
основные причины. Правила устранения проблемы
Любые посторонние шумы в двигателе автомобиля часто вызывают у владельцев чувство настороженности. И даже если эти звуки никак не отражаются на ходовых качествах, само их появление заставляет водителя задуматься о диагностике. На многих автомобилях стучат «пальцы» при разгоне, но эта проблема часто игнорируется. Звук появляется, когда машина набирает скорость. Если вовремя не обратить на это внимание, возникают куда более серьезные проблемы. При этом определить причины появления стуков, а также исправить эту проблему автолюбители самостоятельно не могут. Давайте рассмотрим причины этих неприятных водительскому уху звуков, а также узнаем, как устранить данные проблемы с мотором.
Стук пальцев
Из двигателя, который работает под нагрузкой, могут доноситься звонкие металлические звуки. Они исчезают при наборе определенной скорости. Механики старой школы скажут, что это стучат «пальцы» при разгоне. Однако водитель удивится, и будет полностью прав: к «пальцам», установленным в поршнях, звук никакого отношения не имеет.
Природа этого стука носит другой характер. Он вызывается детонацией. Иногда по определенным причинам топливо может сгорать неправильно. Взрывная волна в камере сгорания отражается от поршня и от стенок цилиндра. При этом создаются те самые звонкие металлические стуки, в которых специалисты слышат стук «пальцев».Почему «пальцы»?
Процесс сгорания горючей смеси в полностью исправном моторе идет последовательно. Возле свечи зажигания разгорается пламя, и постепенно оно заполняет весь цилиндр. Но есть и другой вариант горения – детонационный. Взрыв топливной смеси в камере сгорания происходит резко. При этом повышается давление и температура. Этот самый взрыв и называют детонацией. Вот почему водитель слышит стук – он исходит от взрывной волны. Правильное сгорание подразумевает скорость распространения огня до 30 м/с. Давление газов растет постепенно. При таком сгорании пламя заполняет цилиндр постепенно. Газы давят на поршень мягко. Не возникает стуков газа о стенки камер сгорания, так как никакого взрыва нет. Если скорость горения больше, то это и есть предпосылки для детонации. Кстати, данное явление очень вредно для двигателя.
Детонация – что это?
Если стучат «пальцы» при разгоне, то это говорит о детонации в двигателе. Таковой называют мгновенный и очень разрушительный по своей силе взрыв любых воспламеняющихся веществ после удара или срабатывания детонатора. Это определение по словарю Ушакова. Детонация горючих веществ для двигателей автомобилей – это быстрое выгорание смеси бензинов и воздуха. Возникает, когда мотор работает под нагрузкой на низких оборотах и некачественном топливе. Этот процесс сопровождается стуками, вибрацией, повышением температуры. В результате стучат «пальцы» при разгоне (ВАЗ-2112 в том числе).
Почему возникает детонация?
Октановое число горючего – это показатель, которым характеризуется коэффициент сопротивления горючей жидкости воспламенению в процессе сжатия. Другими словами, это детонационная стойкость.
Естественно, моторам, где степень сжатия достаточно высокая, необходимо топливо с высоким октановым числом. Любой современный двигатель имеет высокую степень сжатия. Если заливать в него низкооктановый бензин, это значительно повышает риск возникновения детонации. Калильное зажигание – это самостоятельное сгорание топливной смеси в цилиндрах. Одна из причин этого явления – недогоревшая сажа или же высокие температуры в камере сгорания. Еще одна причина, почему стучат «пальцы» в двигателе при разгоне, – это бедная топливная смесь. Если увеличить количество воздуха в соотношении с объемом топлива, это вызывает детонацию. Слишком бедная смесь в момент попадания в цилиндр вызовет детонацию с большей вероятностью, нежели нормальная. Также подобный эффект возникает при высоких нагрузках. Стучат «пальцы» на разгоне именно из-за перегрузок силового агрегата. Если вы начнете двигаться на третьей передаче вместо первой, может появиться не только звон, но и характерный металлический лязг.Еще о причинах стука
Когда автомобиль набирает скорость, для двигателя это стрессовая ситуация. Особенно если разогнать автомобиль нужно внезапно. Когда водитель выжимает педаль акселератора в пол для резкого набора оборотов, к примеру с одной до шести тысяч, тогда водитель услышит, как стучат «пальцы» при разгоне («Приора» не является исключением).
Это вполне нормально. Чтобы быстро набрать скорость, электроника подает в цилиндры больше топлива с тем же количеством воздуха, что однозначно приведет к возникновению детонации. Но также ситуация возможна и на плавных стартах. Водитель будет слышать характерный стук. Данное явление не является нормальным при плавном наборе скорости. В этих случаях необходимо быстро выявить и устранить причину. Это поможет избежать неприятностей.Типовые причины звона «пальцев» при нормальной работе ДВС
Если стучат «пальцы» при разгоне в «Калине», возможно, вышел из строя ДМРВ. Если он работает неправильно, тогда ЭБУ будет получать неверную информацию и отдавать неправильные команды. Еще одна причина – неверно выставленный угол опережения зажигания. По этой причине точка, в которой топливо будет сгорать максимально, близится в ВМТ. Это ведет к повышенному давлению в камере сгорания. Если стучат «пальцы» при разгоне на «Форде Фокусе», то, возможно, вышел из строя датчик гашения детонации. Обязательно стоит проверить данный элемент. Если он перестал работать, его следует заменить.
Некачественное топливо – это причина всех бед, которые случаются с автомобилями. Об этом уже подробно описано выше. Нужно заметить, что стук пальцев – это не всегда проблема, которая сформировалась в процессе использования автомобиля. Случаются ситуации, когда машина уже с завода идет с неверно подключенными датчиками. В итоге это приводит к детонациям и стукам. Такая проблема особенно опасна, потому как двигатель находится на обкатке и детонация для него особенно вредна. Ее следует исключить.Последствия
Детонация может вызывать непоправимые последствия для двигателя. Это прогары и другие повреждения клапанов, поломки поршневых колец.
В этот момент двигатель испытывает огромные тепловые и механические нагрузки. Плавятся кромки поршней, разламываются перемычки между кольцами. Также достается и шатунным вкладышам.Как избежать детонации?
Все без исключения современные автомобили оснащены специальным датчиком и блоком, которые реагируют и подавляют данное разрушительное явление.
Как только детонация возникает, мембрана датчика фиксирует напряжения, величина которых зависит от частоты и от амплитуды взрывной волны в цилиндре. Исполнительная система принимает сигнал с сенсора и изменяет алгоритм работы системы зажигания. Если у вас стучат «пальцы» при разгоне («Таврия»), причины этого явления могут быть в бензине, настройке карбюратора, угле зажигания. Самый простой способ избежать детонации – предотвратить преждевременное воспламенение. Также можно увеличить обороты мотора. При управлении рекомендуется повышать обороты плавно. Если нужен резкий старт, то специалисты рекомендуют раскрутить мотор до старта, а затем начать движение. Снизить детонацию можно методом подбора калильного числа свечей. В этом случае рекомендуется использовать более горячие свечи. Они будут сжигать всю топливную смесь без остатка, и никаких турбулентностей не будет.Заключение
Детонация всегда возникает неожиданно и может сильно напугать автовладельцев. Когда стучат «пальцы», стоит воспользоваться этими рекомендациями, причины подробно описаны. Если проблему не удается решить самостоятельно, тогда стоит обратится за помощью в СТО.
7 причин почему идет детонации двигателя их последствие и как их убрать
Двигатель детонирует во время разгона: как распознать детонацию и что делать в этом случае
Начнем с того, что ряд неисправностей двигателя опытные автомеханики и сами водители могут определить по звуку работы ДВС. Как правило, появление «звона» при резком нажатии на газ на повышенных передачах или «бубнящий» звук после выключения зажигания не сильно пугает начинающих автолюбителей, однако зачастую это звук детонации двигателя.
При этом в ряде случаев такие звуки поголовно списывают на стук поршневых пальцев. Однако важно понимать, что зачастую дело не в пальцах, а в детонации, которая в скором времени может обернуться серьезными неприятностями и дорогостоящим ремонтом мотора.
Нужно учесть, что поршневые пальцы обычно стучат на сильно изношенных моторах, в которых уже давно имеются проблемы с поршнями, кольцами и т.д. При этом звонкие постукивания в относительно «свежем» силовом агрегате с нормальной ЦПГ никак не являются звуками ударов металла по металлу.
В этом случае металлический звон появляется в результате нарушения процесса сгорания топлива в цилиндрах. Далее мы поговорим о том, по каким причинам возникает детонация двигателя на холостых оборотах, при резком нажатии на педаль газа в движении и т.д.
Также мы рассмотрим, что делать водителю для сохранения моторесурса и самого ДВС в исправном состоянии.
Детонация двигателя: основные признаки
Итак, детонация представляет собой неконтролируемый хаотичный процесс сгорания топлива, который больше похож на взрывы в цилиндре. Причем эти условные взрывы происходят несвоевременно (например, на такте сжатия, когда поршень еще движется вверх). В результате ударная волна и высокое давление становятся причиной сильнейших нагрузок на элементы ЦПГ и КШМ, буквально разрушая мотор.
Детонацию определяют не только по звуку, но и по ряду других признаков. Прежде всего, двигатель теряет мощность при нажатии на газ, также мотор может немного дымить в момент резкого нажатия на педаль акселератора серовато-черным дымом. Обычно сильная детонация сопровождается перегревом двигателя, на холостых и под нагрузкой работа ДВС может быть крайне неустойчивой, скачут обороты и т.д.
Почему возникает детонация в цилиндрах двигателя
Специалисты выделяют несколько главных причин, по которым топливо детонирует в двигателе.
- Прежде всего, стоит сразу выделить использование низкооктанового бензина в агрегатах с высокой степенью сжатия. Если просто, октановое число бензина (АИ-92, 95 или 98) фактически указывает на его детонационную стойкость, а не на качество, как многие ошибочно полагают.
Использование топлива с неподходящим октановым числом для конкретного двигателя закономерно приводит к тому, что топливно-воздушный заряд детонирует при сильном сжатии. Еще добавим, что простые двигатели, которые не имеют ЭСУД и датчика детонации, подвержены большему риску.
- Закоксовка двигателя. Важно понимать, что современные моторы не только на иномарках, но и на отечественных авто сильно отличаются от аналогов времен СССР. В двух словах, если моторы на модели «Москвич» 2141 имели степень сжатия около 7 единиц и нормально работали на любом топливе, то сегодня агрегаты имеют от 9 до 11 и более единиц.
При этом уменьшение физического объема камеры сгорания в результате образования слоя нагара приведет к тому, что топливный заряд в цилиндре будет сжиматься сильнее, при этом появляется детонация. Если к этому добавить и низкое качество топлива на отечественных АЗС, тогда риски еще более возрастают.
- Нарушение процесса смесеобразования. В этом случае может начать детонировать слишком «богатая» смесь, в которой много топлива по отношению к количеству воздуха.
Отметим, что такая детонация может быть кратковременной и часто остается незамеченной для водителя, однако об отсутствии вреда для двигателя при этом говорить никак нельзя.
- Угол опережения зажигания (УОЗ). Простыми словами, угол зажигания определяет, в какой момент будет подана искра в камеру сгорания. Если учесть, что в норме топливо не взрывается, а горит, тогда становится понятно, что процесс сгорания также занимает некоторое время.
При этом важно сделать так, чтобы максимум давления газов на поршень, которые образуются в результате сгорания порции топлива, приходился именно на момент рабочего хода поршня. Только так можно эффективно передать через поршень энергию расширяющихся газов на коленвал.
Для этого искру можно подать немного раньше того момента, пока поршень дойдет до верхней мертвой точки (ВМТ). За это время топливо успеет воспламениться, а расширение газов и рост давления на поршень как раз произойдет в тот момент, когда поршень уже достигнет ВМТ и затем пойдет вниз.
При этом нужно понимать, что неправильная регулировка УОЗ (сдвиг момента воспламенения ближе к ВМТ), когда смесь воспламеняется практически тогда, когда поршень уже поднялся верхнюю мертвую точку, часто становится причиной появления детонации.
Опять же, традиционно добавим к этому еще и низкое качество топлива.
- Конструктивные особенности камеры сгорания. Бывает так, что некоторые двигатели изначально склонны к детонации. В ряде случаев причиной является само устройство камеры сгорания, реализация ее охлаждения и т.д.
Еще виновником могут оказаться и поршни, у которых отмечен неудовлетворительный тепловой баланс (например, днище поршня утолщено ближе к центру, что заметно ухудшает качество отведения избытков тепла). Так или иначе, но риск возникновения детонации на подобных моторах намного выше.
- Перегрев двигателя. Если обратить внимание на предыдущий пункт, становится понятно, что повышение температуры в камере сгорания является причиной детонации. Вполне очевидно, что снижение эффективности работы системы охлаждения может привести к тому, что двигатель перегревается.
В подобных условиях вполне вероятно возникновение детонации, при этом сама детонация также дополнительно приводит к локальным и общим перегревам. По этой причине детонация мотора в результате неисправной системы охлаждения особо опасна, так как силовой агрегат может быть не только сильно поврежден, но и в дальнейшем не подлежать восстановлению.
Как устранить детонацию двигателя
Итак, рассмотрев основные причины детонации мотора и разобравшись с тем, что это такое, можно перейти к тому, как избавиться от этого явления. Начнем со старых ДВС. В самом начале следует исключить перегрев мотора, а также заправку некачественным или неподходящим топливом, проверить свечи зажигания.
Далее, если на двигателе не установлен датчик детонации, тогда проявление ее признаков указывает на необходимость регулировки УОЗ. Для этого нужно уменьшить угол опережения зажигания, покрутив трамблер.
Главное, добиться того, чтобы двигатель стабильно работал в режиме холостого хода.
Решение является временным, так как долго с уменьшенным углом зажигания ездить нельзя (прогорят выпускные клапана в результате роста температуры отработавших газов), но добраться до сервиса своим ходом вполне реально.
Однако во время езды нужно постоянно следить за тем, чтобы в двигателе не было характерного «звона». Еще на старый ДВС можно установить так называемый электронный октан-корректор, чтобы избежать манипуляций с трамблером. Еще добавим, как показывает практика, многие владельцы карбюраторных авто предпочитают установить электронное зажигание.
Что касается более современных двигателей, на инжекторных агрегатах штатно реализованы решения, позволяющие избежать или свести к минимуму риск детонации. Речь идет о датчике детонации двигателя (ДД), который фиксирует ее возникновение. Затем соответствующий сигнал поступает на ЭБУ.
Затем блок управления самостоятельно корректирует угол опережения зажигания с учетом тех данных, которые были получены от ДД.
При этом возможность такой корректировки составляет, в среднем, сдвиг угла на 2 – 5 градусов.
Если же избавиться от детонации таким способом не удается, ЭБУ фиксирует ошибку и прописывает к себе в память, на панели приборов может загореться «чек», двигатель переходит в аварийный режим и т.д.
То же самое происходит и тогда, когда сам датчик детонации вышел из строя или топливо оказалось слишком неподходящим, то есть контроллер попросту не способен убрать детонацию путем запрограммированного сдвига угла опережения зажигания.
Становится понятно, что в этом случае водителю на начальном этапе нужно начать с проверки датчика детонации, а также считать ошибки из памяти ЭБУ. Сделать это можно в рамках компьютерной диагностики двигателя.
Также проверку можно выполнить и самостоятельно (при наличии специального диагностического адаптера-сканера в разъем OBD и смартфона/планшета или ноутбука с предварительно установленным программным обеспечением).
Источник: http://KrutiMotor.ru/vo-vremya-razgona-detonatsiya-dvigatelya-chto-delat/
Причины возникновения детонации двигателя и способы её устранения
Детонация двигателя является одной из самых тревожных проблем транспортного средства, но не многие знают, что это такое и с чем связано.
В принципе, она возникает, когда смесь воздух/топливо внутри цилиндра неправильно распределяется, что делает неравномерным горение. В нормальных условиях топливо сгорает в цилиндре в процессе смешивания с воздухом и необходимой энергией.
Когда начинается взрыв внутри цилиндра, оно горит неравномерно, что может повредить стенки цилиндра и сам поршень.
Базовое понимание детонации
Детонация мотора появилась одновременно с рождением двигателя внутреннего сгорания и описывается как автоматическое зажигание газа в камере сгорания.
В первое время не было возможности проверить её действие и бытовало мнение, что всё дело в зажигании.
Тем не менее только в 1940 годах была проверена теория её возникновения, возможность обнаружения и последующие действия устранения этого явления.
Датчик детонации
На современных агрегатах установлен датчик детонации, который способен контролировать уровень опасности. Это устройство воспринимает, а в дальнейшем преобразовывает механическую энергию колебаний цилиндров в электрический импульс.
По сути, датчик постоянно посылает сигналы в электронный блок управления двигателем, а сам блок следит за изменениями состава смеси и угла опережения зажигания.
С его помощью также можно достигнуть более экономичной работы при максимальной мощности двигателя.
С чего начинается детонация
На видео показано, что такое детонация двигателя:
Когда двигатель переходит в детонацию, слышится громкий шум. Поскольку её последствия очень печальны, важно определить, что является причиной такого взрывного горения горючей смеси. Чтобы устранить проблему, возможно, нужно изменить работу двигателя, в противном случае она может его разрушить в короткий промежуток времени.
Характерный звук от двигателя в процессе этого явления обусловлен давлением волны в случае сгорания от вибрации стенок цилиндра. Газ и форма, размеры и толщина камеры сгорания и стенки цилиндра определяют высоту звуковой волны.
Детонация двигателя на холостом ходу может произойти после прохождения транспортным средством условий, которые способствуют повышению нагрева деталей силового агрегата.
Даже если выключить зажигание, под воздействием энергии коленчатый вал продолжает движение, что приводит к попаданию топлива в цилиндр мотора, а там оно успевает нагреться до такой температуры, что само по себе воспламеняется.
Причины детонации
На видео рассказано о причинах детонации двигателя:
Детонация двигателя имеет один из самых разрушительных эффектов в любом агрегате. Поэтому нужно немедленно узнать, как устранить её, обнаружив следующие причины взрывного горения в цилиндрах:
Обратите внимание, что каждая из этих возможных причин является относительной. То есть нет абсолютного времени, смещения силы или опережения зажигания, что гарантируют появление детонации. Равным образом не существует никаких абсолютных параметров, которые гарантируют, что такого явления не произойдёт.
Причин много, остановимся на более распространённых из них.
Слишком низкое октановое число топлива в автомобиле
Октановое число топлива
Одной из причин детонации двигателя является низкое качество и низкое октановое число топлива, которое может вызвать целый кластер проблем, таких как повышенная температура камеры сгорания и более высокое давление в цилиндрах.
Октановое число показывает, какую степень сжатия может переносить бензин — чем выше рейтинг, тем топливо более устойчиво к возгоранию. Вот почему более сложные двигатели высокого давления требуют более дорогого топлива.
Октановое число бензина иногда называют антидетонационным индексом. Производители рекомендуют определённый вид смеси для достижения максимальной производительности в своих транспортных средствах.
Эти проблемы могут привести к предварительному зажиганию, а это приводит к тому, что топливо сгорает в двигателе раньше, чем следовало бы. Есть два способа, когда бензин может воспламениться в камере сгорания: от свеч зажигания или от неправильной степени сжатия.
Это хрупкое равновесие и любой фактор может испортить весь процесс. Если сжатие двигателя является слишком низким, это приводит к тому, что топливо не сгорает полностью, а оставшиеся компоненты прилипают к внутренним частям камеры.
Это накопление отрицательно влияет на цилиндры, что является распространённой причиной взрывного горения.
Нагар на стенках цилиндра
Нагар на стенках цилиндра
Все виды топлива должны иметь определённый уровень очистки, однако этого может быть недостаточно, чтобы остановить отложения нагара. Когда образуются отложения, объём цилиндра эффективно уменьшается, что увеличивает сжатие, которое может вызвать детонацию. Для борьбы с ним сначала попробуйте приобрести моющие присадки в магазине автозапчастей, а затем изменить топливо.
Неправильные свечи зажигания
Использование неправильных свечей зажигания является ещё одной причиной детонации двигателя. Водители часто не понимают рекомендаций производителя, покупая неправильные приборы зачастую с целью экономии.
Поскольку свечи зажигания помогают контролировать внутреннюю среду двигателя и работают в довольно точных условиях, неправильно подобранные создают условия для неправильного сжигания топлива.
Они могут привести к наращиванию сгорания в камере и повышению температур ходовых частей, которые являются одними из причин возникновения детонации.
Эти три причины являются наиболее распространёнными, а в плане исправления ситуации — наименее дорогостоящими. Если ваш автомобиль по-прежнему имеет детонацию в двигателе после устранения этих причин, оправляйтесь в автосервис.
Как устранить детонацию
На видео рассказано, как можно устранить детонацию двигателя:
http://www.youtube.com/watch?v=ig4F4bx5QOk
Разобравшись, что такое детонация и какие наиболее вероятные причины её возникновения, займёмся тем, как устранить это взрывное горение горючей смеси.
Более высокая скорость помогает снизить вероятность её появления, потому что она сокращает время сжигания. Максимальное давление, следовательно, уменьшается и смесь воздух/топливо не будет подвержена воздействию высоких температур.
Примером этому является тот случай, когда вы ведёте свой автомобиль по прямой ровной дороге с холма. Когда вы снова едете в гору, вы начинаете терять скорость и иногда можете услышать, как ваш двигатель детонирует.
Таким образом, чтобы получить ускорение, вы переключаетесь на одну-две передачи ниже и ускоряетесь снова, тем самым убирая такое явление.
Повышение влажности на самом деле также снижает риск детонации. Высокое содержание воды в воздухе способствует снижению температуры горения.
Наиболее распространённые трюки (и простые варианты), используемые водителями для получения максимальной производительности без детонации:
- Использование более высокооктанового топлива.
- Торможение на опережение зажигания.
- Снижение температуры в камере сгорания. Эта задача может быть решена посредством интеркулера или с помощью нагнетания воды. Охладитель принимает входящий нагнетённый воздух и передаёт его через серию воздушных охладителей, таким образом уменьшая температуру.
На видео показано, как происходит детонация дизельного двигателя:
Детонация двигателя не новая проблема, производители пытались устранить или уменьшить её возникновение на протяжении многих лет. Это сложный процесс, что включает в себя множество различных факторов, но чтобы по-настоящему понять, как работает двигатель, вы должны понять, отчего происходит детонация, и изучить шаги, которые ей способствуют.
Всегда обращайте пристальное внимание на все посторонние шумы и стуки, которые исходят от мотора вашего автомобиля, потому что они могут указать на это явление в камере сгорания и должны быть немедленно убраны.
Хотя детонация может быть потенциально опасной для двигателя, ею легко управлять, как только вы поймёте причину возникновения.
Источник: http://365cars.ru/soveti/detonatsiya-dvigatelya.html
Причины детонации двигателя после выключения зажигания
Самопроизвольные вспышки горючей смеси в камерах сгорания — явление непросто неприятное, но и пугающее. На самом деле, если разобраться в причинах этого явления и вовремя предпринять адекватные меры, срок службы двигателя можно продлить. Если научиться отличать детонацию от калильного зажигания, то проблему можно решить ещё проще.
Причина детонации двигателя после выключения зажигания
Самопроизвольные вспышки горючей смеси в камерах сгорания
Если в нормальном режиме воздушно-топливная смесь может сгорать и распространять фронт пламени со скоростью от 25 до 30 м/с, то во время детонационного процесса фронт распространяется со скоростью в 10–15 раз быстрее. А это уже больше похоже на разрушительный взрыв. Тем не менее детонацию часто путают с калильным зажиганием.
Причина детонации двигателя после выключения зажигания
Калильное зажигание возникает в следствии перегрева деталей камеры сгорания, в основном кокса и нагара на днище поршня, свечах и самой камере.
Процесс происходит следующим образом: мы выключаем зажигание, но коленвал по инерции продолжает перемещать поршень вниз, всасывая топливо-воздушную смесь. Она воспламеняется не от искрообразования свечи, а от температуры перегретых деталей.
Таким образом, процесс горения может продолжаться ещё несколько секунд, иногда до 10–12.
Калильное зажигание, или всё-таки детонация?
Калильное зажигание
Причинами калильного зажигания могут быть:
- В карбюраторных двигателях подача топлива должна перекрываться сразу после выключения зажигания при помощи экономайзера принудительного холостого хода. Именно он может быть причиной нештатной подачи бензовоздушной смеси из-за подклинивания штока клапана. Это происходит потому, что шток может износиться или закоксоваться. Как правило, проблема устраняется чисткой клапана экономайзера принудительного холостого хода, его заменой.
- В моторах с инжектором всей системой питания управляет электроника, поэтому причину нужно искать в первую очередь в неисправности датчиков холостого хода, электронном блоке управления двигателем.
- В дизельных двигателях причиной калильного зажигания может быть неисправность форсунок, топливного насоса высокого давления, которые также подают солярку в камеру сгорания. В дизелях это чаще может происходит из-за изменения степени сжатия в следствии значительных отложений нагара и в этом случае, действительно, стоит говорить скорее о детонации, чем о калильном зажигании.
Детонация, как она есть
Детонация, как она есть
Детонация может наблюдаться по нескольким причинам с похожими симптомами, но последствия могут быть куда печальнее. При детонации неконтролируемо выделяется огромное количество тепла, катализируя процесс сгорания бензовоздушной смеси.
Основные причины детонации
При схожих симптомах, причинами детонации могут служить:
- Использование топлива с низким октановым числом, меньшей детонационной стойкостью, чем рекомендует завод-изготовитель двигателя. В этом случае детонация возникает по причине несоответствия степени сжатия сорту бензина или солярки — они самопроизвольно загораются без искрообразования, из-за высокой степени сжатия и высокой температуры в камере сгорания. Чтобы избежать детонационных процессов, достаточно заправлять автомобиль бензином именно с таким октановым числом, как указывает производитель.
- Кроме того, важно и качества топлива, наличие в нём примесей, воды, твёрдых фракций.Слишком раннее зажигание также может вызвать детонацию из-за нарушения температурного режима работы в камере сгорания. В этом случае также рабочая смесь сгорает неконтролируемо, поскольку детали цилиндро-поршневой группы перегреты.
Несоответствие калильного числа свечей рекомендации завода-изготовителя. В принципе, неправильных свечей не бывает, они просто могут не соответствовать режимам работы конкретного мотора, накаляться и также вызывать детонацию, топливо будет сгорать без искрообразования. - Нагар в камере сгорания, на днище поршня, на клапанах приводит к уменьшению объёма камеры сгорания, а это, в свою очередь, увеличивает степень сжатия. В таком случае, даже на хорошем и соответствующем двигателю бензине может наблюдаться детонация. Мотористы называют несколько причин образования нагара, среди которых эксплуатация двигателя в режимах малых нагрузок. Для профилактики возникновения нагара желательно дать мотору периодически поработать под сильной нагрузкой, на высоких оборотах.
- Перегрев двигателя. Если мы уверены в качестве топлива, в состоянии цилиндро-поршневой группы и в правильно установленном угле опережения зажигания, стоит обратить внимания на систему охлаждения: уровне антифриза, корректности работы термостата, а также качестве охлаждающей жидкости, чистоте радиатора охлаждения, работу электрического вентилятора охлаждения радиатора.
Детонация может привести к поломке двигателя
Видео об основных причинах появления детонации двигателя
Заключение
Именно поэтому при появлении первых симптомов детонации необходимо проводить диагностику двигателя и принимать меры по устранению неисправности. Чистого всем бензина и ровных дорог!
Источник: http://carfrance.ru/kak-nauchitsya-otlichat-detonaciyu-ot-kalilnogo-zazhiganiya/
Детонация двигателя Ваз, причины детонации инжекторного и карбюраторного двигателей
Содержание:
Все без исключения автомобили ВАЗ, начиная от модели 2101 и заканчивая современными версиями, оснащаются бензиновыми силовыми установками, которые являются более приоритетными у всех автомобильных производителей.
Нормальное функционирование любого бензинового мотора обеспечивается рядом факторов – соблюдением правильной пропорции топливовоздушной смеси, качеством бензина, соответствующим углом опережения зажигания, состоянием ЦПГ. При несоответствии хоть одного из этих факторов возможно появление такого негативного эффекта как детонация.
Детонация – что это такое
Детонация – это просто неправильное сгорание смеси. Но если вовремя не предпринять мер, то детонация двигателя ВАЗ может иметь сильные негативные последствия. Особенность этого эффекта кроется в самовоспламенении горючей смеси за счет воздействия высоких температур и давления в цилиндрах.
При нормальной работе двигателя сгорание горючей смеси проходит в три этапа.
- Индукционный, проходит на подходе поршня к верхней мертвой точке. При этом этапе происходит начало возникновения очага пламени от искры, который в дальнейшем формирует фронт пламени, причем все это сопровождается неинтенсивным нарастанием давления в камере сгорания.
- Формирование и прохождения фронта пламени по камере сгорания, в результате чего основная масса смеси сгорает, и сопровождается это все резким возрастанием давления и температуры.
- Догорание остатков смеси, которые остались за фронтом, а также находящихся возле стенок цилиндра. Вот между переходом от второго этапа к третьему и возможно возникновение детонации. Высокая температура и давление, которое возникает при втором этапе, приводит к появлению быстротекущих химических реакций в несгоревшей смеси, в результате чего она самовоспламеняется. Такое горение происходит очень быстро (до 1200 м/с) и в виде взрыва, сопровождающееся образованием ударных волн, имеющих разрушительный характер.
Эти волны приводят к разрушению пристеночных слоев газов, что обеспечивает повышение теплообмена, из-за чего стенки цилиндров и другие составляющие ЦПГ перегреваются.
Также взрывная волна разрушает масляную пленку стенок, в результате чего повышается трение между цилиндрами и кольцами.
Детонация имеет и механическое воздействие на элементы поршневой группы – резкое возрастание давление приводит к появлению ударных нагрузок на днище поршня, клапана, стенки цилиндров, приводя к их повреждениям.
На рисунке показано, как происходит нормальное и детонационное сгорание топлива.
Слева – нормальное сгорание; справа – детонационное сгорание
Причины возникновения
Если рассматривать этот эффект только на двигателях автомобилей ВАЗ, то возникнуть он может на любом из них – и морально устаревшем моторе модели 2106, и современной установке той же версии 2114 и др.
Есть определенные причины возникновения детонации ВАЗ, и они таковы:
- Несоответствие пропорций горючей смеси. У чрезмерно обогащенной горючей смеси после попадания в цилиндр из-за воздействия высоких температур в отдаленных уголках камеры сгорания возможно возникновение окислительных процессов, которые и являются первопричиной детонации;
- Нарушение угла опережения зажигания. При увеличении угла все процессы в цилиндрах проходят еще до подхода его к ВМТ. Отсюда и высокое давление с температурой, и появление химических реакций с частью смеси.
- Октановое число. Чем оно ниже, тем выше вероятность появления детонации. Объясняется это все тем, что низкооктановый бензин больше подвержен вступлению в реакции.
- Высокая степень сжатия. Повышение этого параметра выше нормы приводит к увеличенным показателям давления и температуры в цилиндрах, которые и являются катализаторами появления реакций.
Все описанные факторы появления такого эффекта одинаковы для всех бензиновых моторов, поэтому причины детонации карбюраторного двигателя те же, что и инжекторного.
Детонация и калильное зажигание
Бывают случаи, когда возникает детонация при выключении зажигания ВАЗ-2106 или любой другой версии. То есть, силовая установка продолжает самостоятельно работать даже после того как прекращена подача искры.
Здесь тоже происходит процесс самовоспламенения, но проходит он несколько по другим причинам. Такое воспламенение происходит от каких-то чрезмерно нагретых элементов ЦПГ. Этот эффект носит название «калильное зажигание», и это уже не детонация двигателя ВАЗ-2106.
Не стоит путать эти два понятия, поскольку они совершенно разные.
Статья в тему — Как бороться с калильным зажиганием
Последствия. Методы борьбы
Детонация карбюраторного двигателя сопровождается появлением металлического стука, особенно под нагрузкой. Многие воспринимают его как «звон пальцев» поршней, однако четкий звук, как будто происходит удар металла о металл, происходит из-за взрывной волны.
Последствия этого эффекта, если не предпринять мер – очень серьезны. Перегрев составляющих частей может привести к пробою головки блока.
Отсутствие масляной пленки, которая разрушается из-за воздействия детонации, повышает трение и приводит к ускоренному износу элементов ЦПГ.
И наконец, механическое воздействие ударной волны вместе с высокой температурой может стать причиной прогорания поршня, разрушения перемычек между кольцами, изгиба шатуна, подгорания тарелок клапанов.
Последствия детонационного сгорания смеси
Пробой прокладки ГБЦ | Прогар поршня |
Прогар клапана
Особенности инжекторных моторовЭффективно бороться с этим эффектом на карбюраторных двигателях можно несколькими способами.
В первую очередь при появлении детонации следует заменить топливо, особенно если перед этим осуществлялась заправка на станции с сомнительным качеством топлива.
Если же топливо подозрений не вызывает, то стоит проверить зажигание и установить более поздний угол опережения путем проворота трамблера.
Причины детонации инжекторного двигателя идентичны карбюраторному, но у таких моторов имеется помимо металлического звона еще ряд признаков, указывающих на возникновение этого эффекта.
А все потому, что двигатель с такой системой питания является более совершенным.
У него процессы смесеобразования и подачи смеси в цилиндры контролируется электронным блоком управления на основе показаний множества датчиков.
Также он в зависимости от режима работы мотора еще и самостоятельно подбирает и устанавливает угол опережения. То есть, водитель самостоятельно установить зажигание уже не может.
Электронный блок способен отследить и появление детонации. Для этого все инжекторные моторы оборудованы датчиком детонации (ДД).
Датчик детонации
Этот датчик способен выявить появление детонационного сгорания, а ЭБУ на основе его данных уже примет меры. К примеру, если причина детонации двигателя ВАЗ-2109, оснащенного инжекторной системой питания, — некачественное топливо, и датчик уловил появление эффекта, ЭБУ просто уменьшит угол опережения зажигания и детонация прекратится.
Датчик детонации, принцип его работы
Конструктивно все датчики детонации одинаковы и в их основе лежит пьезоэффект, то есть механическое действие преобразуется в электрическое. И чем больше механическое воздействие, тем больше энергии датчик способен выработать.
Основной составляющей этого датчика является пьезоэлемент, который от механического воздействия вырабатывает электрический ток. При нормальном режиме работы этот датчик вырабатывает электроимпульсы небольшой силы, которые не пропускаются резистором, имеющемся в конструкции.
Во время возникновения детонации, ударные нагрузки и вибрация значительно возрастают, поэтому усиливается воздействие на пьезоэлемент. При достижении определенной силы тока, которую вырабатывает датчик, происходит пробой резистора и импульс поступает на ЭБУ, что и является для него сигналом, что требуется принятие мер для устранения появившегося неправильного сгорания.
Поскольку ДД работают по одному принципу, то схема датчика детонации ВАЗ-2110 такая же, как и на моделях 2107, 2109 (инжекторные версии), 2114 и т. д.
Схема подключения ДД
Признаки неисправности датчика детонации (ДД)
Отметим, что неисправность ДД может повлиять на работоспособность силовой установки. Дело в том, что если ЭБУ выявит, что он не работает, то он переведет работу мотора в аварийный режим, при котором будет установлено позднее зажигание, чтобы полностью исключить возможность возникновения детонационного сгорания.
Признаки неисправности датчика детонации ВАЗ-2110 таковы:
- Нестабильная работа мотора на ХХ;
- Падение мощностных показателей двигателя;
- Повышение расхода бензина;
- Затрудненный пуск мотора;
В общем, все то, что является следствием позднего зажигания. Признаки неисправности датчика детонации ВАЗ-2114 или любой другой инжекторной модели ВАЗ – идентичны.
Но такие признаки могут давать не только ДД, а и другие датчики, отвечающие за работу системы питания, поэтому важно знать, как проверить датчик детонации ВАЗ-2110. В противном случае, можно долго искать причину неправильной работы мотора. Часто автовладельцы не обращают внимания именно на ДД, греша на другие элементы.
Где искать и как проверить датчик детонации
Для того, чтобы проверить его, необходимо еще знать, где находится датчик детонации ВАЗ-2110. Здесь все просто, чтобы он мог эффективно улавливать вибрации, его поместили на блок цилиндров. Место его расположения во многом зависит от конструктивных особенностей самого мотора.
На 8-клапанных моторах он расположен обычно в зоне прямой видимости и добраться до него обычно легко. Поэтому определить, где находится датчик детонации на ВАЗ-2107 (инжектор), несложно. Он установлен со стороны выпускного коллектора и представляет собой массивную шайбу и идущей к ней проводкой и закрепленную на двигателе при помощи болта.
А вот на 16-клапанных моторах место установки несколько иное, чем расположение датчика детонации на ВАЗ-2107 (инжектор). Из-за того, что головка блока значительно массивнее, датчик расположили ниже – под выпускным коллектором, поэтому доступ к нему ограничен, и зачастую до него добраться можно только из-под авто на эстакаде или смотровой яме.
И хоть место расположения ДД может несколько отличаться из-за конструкции мотора, но подключение его всегда идентично. Так, схема подключения датчика детонации ВАЗ-2109 с инжекторным двигателем, такая же, как и на модели 2114.
Проверка датчика детонации ВАЗ-2110 может выполняться двумя способами.
Первый из них подразумевает наличие тестера, переведенного на замер сопротивления (уровень замера – до 2 кОм).
Проверка датчика детонации тестером
Для проверки всего лишь следует отсоединить колодку с проводкой от ДД и к контактам датчика подключить тестер. Затем следует наносить легкие удары ключом по болту крепления ДД и следить за показаниями на дисплее тестера.
После подключения на дисплей выведется определенное значение сопротивления датчика. В момент удара по болту, сопротивление будет резко возрастать, но затем возвращаться к старому показателю. Если этого не происходит (сопротивление не поднимается, или не возвращается) датчик неисправен и требует замены.
Второй способ не требует какого-либо оборудования и является более эффективным. Для его проведения необходимо запустить мотор, установить обороты на уровне 2000 об/мин.
Затем берется рожковый ключ, можно использовать небольшой молоток с металлической наставкой (если доступ к ДД ограничен) и наносятся удары по болту крепления.
При исправном ДД после нанесения ударов обороты мотора должны упасть, поскольку такое воздействие будет расцениваться датчиком как детонация и ЭБУ на основе его сигналов уменьшит угол зажигания. После прекращения воздействия на болт обороты должны восстановиться. Если этого не происходит – ДД неисправен.
Замена датчика
С тем, как проверить датчик детонации ВАЗ-2114 или любой другой модели, разобрались. Отметим, что этот датчик ремонту не подлежит и если он неисправен, то необходимо его заменить.
Замена датчика детонации ВАЗ-2114 – операция простая, но может быть затруднена плохим доступом к нему (16-клапанные моторы). Для смены же понадобиться всего лишь новый элемент и рожковый ключ соответствующих размеров.
Перед откручиванием крепежного болта следует предварительно отсоединить колодку с проводами. Затем болт выкручивается, снимается старый датчик, а на его место устанавливается новый и надежно фиксируется все тем же крепежным элементом. И только после этого подключается колодка с проводами.
Видео — причины и последствия детонации
Источник: http://remont-avtovaz.ru/detonaciya-dvigatelya-vaz/
Детонация двигателя, причины, последствия
Автовладельцы в процессе эксплуатации часто сталкиваются с таким явлением, как детонация. По сути, это ударная волна, причиной которой является самовоспламенение горючего еще до момента достижения в камере сгорания требуемого давления (для дизельных моторов) или воспламенения искры (для моторов, работающих на бензине).
Почему происходит детонация двигателя? Как устранить эту проблему? Что произойдет, если ничего не предпринять? Эти вопросы требуют детального рассмотрения.
В чем причины детонации двигателя?
Для устранения неисправности важно знать причины детонации двигателя. Это, применение топлива низкого качества. Автовладельцы с целью экономии часто заливают бензин с меньшим октановым числом. Объяснить это легко. Современные двигателя имеют высокую степень сжатия, что требует применение более качественного бензина.
Вторая проблема — неправильно выставленное зажигание (как правило, ошибка заключается в ранней установке зажигания). Такая хитрость позволяет машине быстрее реагировать на педаль газа. Но имеется и минус.
Из-за преждевременного запала горючая жидкость воспламеняется в момент, когда поршень еще не стал в верхнюю позицию.
Из-за этого на поверхность поршня действует ударная нагрузка, имеет место перегрев и появляется детонация.
Обедненная смесь. Бывают ситуации, когда преждевременное воспламенение происходит из-за высокого содержания воздуха и малого объема бензина в подготовленном составе. Здесь возможны две причины — неправильно выполнена регулировка или же специально увеличена мощность мотора.
Если горючее подготовлено с учетом требований производителя, воспламенение происходит своевременно, а мотор работает идеально. При этом температура горения поддерживается на должном уровне.
В случае обеднения смеси детали мотора перегреваются, из-за чего при последующем впрыске горючее загорается под действием тепла, не дожидаясь появления искры.
Практика показала, что в случае «обеднения» горючего риск детонации существенно возрастает.
Появление нагара. При длительной эксплуатации на внутренних элементах мотора возникают отложения, создающие «тепловую рубашку». Это, в свою очередь, приводит к росту рабочей температуры и воспламенению горючего в камере сгорания. Итог — сильная детонация двигателя на холостых оборотах.
Неправильно выбранные свечи зажигания. Часто автовладельцы не обращают внимания на модель и тип свечей, которые покупаются для системы зажигания машины. На самом же деле этот вопрос крайне важен. Изделия должны подбираться под каждый конкретный тип мотора и подходить по тепловым характеристикам. Итогом несоответствия как раз и являются вибрации.
Вероятные последствия детонации двигателя
Детонация двигателя при выключенном зажигании или после пуска мотора — опасный процесс, который может привести ко многим проблемам с автомобилем в будущем:
Снижению мощности двигателя и быстрому износу элементов кривошипно-шатунного узла. Как следствие, ресурс мотора уменьшается, и раньше наступает необходимость его ремонта.
Из-за неправильного воспламенения силовой узел постоянно перегревается. В результате происходит разрушение поршней и внешней части цилиндров.
Кроме того, от высокой температуры страдают клапана, свечи зажигания и кольца на поршнях. Со временем на внутренних элементах движка появляются задиры, зазубрины и трещины.
На начальном этапе это приводит к усилению детонации, а со временем и к выходу из строя двигателя.
Высок риск перегорания прокладки, которая устанавливается под ГБЦ мотора. Это произойдет, если своевременно не избавиться от проблемы, и не устранить детонацию.
Появляются сильные ударные нагрузки, которые негативно действуют на движущиеся элементы мотора. Наибольшее влияние испытывают на себе элементы кривошипно-шатунного механизма. В частности, из-за сильных ударов страдает шатун, поршень, а также вкладыши (коленвала, шатунные и коренные).
Из сказанного выше видно, что отсутствие каких-либо действий, направленных на устранение проблемы, неизбежно приводит к выходу из строя элементов мотора и необходимости больших затрат в будущем. Вот почему важно быстро диагностировать и устранить проблему.
Устранение детонации двигателя
Теперь выделим основные способы, как устранить детонацию мотора. Учтите следующие рекомендации:
- Помните, что детонация не возникает просто так. Чаще всего это происходит на фоне каких-то изменений (ремонта, заправки мотора и прочих). К примеру, если до заезда на АЗС двигатель работал на «отлично», а сразу после заливки топлива стал «барахлить», причина очевидна — в бак попало топливо низкого качества. В этом случае не стоит «докатывать» бензин. Сливайте его, после чего заполняйте емкость новым и проверенным горючим.
- Еще одна проблема появления детонации заключается в образовании нагара, о котором упоминалось выше. Решение здесь простое — достаточно время от времени давать двигателю повышенные нагрузки. Желательно выбрать ровный участок трассы и разогнать авто до предельной скорости хотя бы на несколько секунд. При этом участок для разгона должен быть безопасным. Не стоит идти на риски в плотном городском потоке.
- Если детонация на «дизеле» проявляет себя появлением выхлопных газов странного цвета (зеленого или черного), это свидетельствует о нарушении целостности поршней. В наиболее сложных случаях через выхлопную систему вылетают элементы алюминия. Простой регулировкой здесь уже не обойтись — требуется ехать на СТО и менять поршневую группу.
- Сильная детонация двигателя может появляться из-за проблем со свечами (загрязнения или неправильного выбора). В такой ситуации достаточно установить новый комплект свечей. Если вибрации появляются в момент пуска дизеля, без посещения сервиса уже не обойтись.
В завершение учтите еще несколько советов:
- Заправляйте машину качественным топливом.
- Проверяйте уровень охлаждающей жидкости.
- Регулируйте и выставляйте правильный угол опережения зажигания.
- Следите за состоянием свечей — они должны быть чистыми.
Детонация двигателя — проблема, которая требует решения сразу после появления. Бездействие может стать причиной серьезных проблем с двигателем. Удачи на дорогах и конечно же без поломок.
Источник: RemontAvtoVaz.ru
Источник: https://avtodoc24.ru/detonatsiia-dvigatelia-prichiny-posleds/
Детонация двигателя – причины и способы борьбы
Водителям старой закалки, которые начинали свой автомобильный путь 15-20 лет назад и ранее, вряд ли нужно рассказывать, что такое детонация. Эту информацию они впитывали буквально с первых уроков автошколы, и она была одним из пунктов правильного вождения и обслуживания автомобиля.
Характерный звук детонации, который в народе прозвали «стуком пальцев», каждый заучивал буквально с первых километров. Однако начинающие автомобилисты, которые лишь недавно вступили в ряды водителей, могут вообще не знать о таком явлении.
Современные автомобили худо-бедно научились бороться с детонацией, и она перестала быть такой распространенной.
Но в этом и опасность – сама детонация, как физическое явление, никуда не делась и в современных моторах, при возникновении она все равно наносит сильный вред двигателю, особенно, когда водитель не знает что это такое и как с ней бороться.
Воспламенение смеси в цилиндрах
Что такое детонация?
Говоря научным языков, детонация – это произвольное самовоспламенение смеси в цилиндрах двигателя, которое имеет характер взрывной волны. Именно последний параметр отличает детонацию от других случаев самовозгорания смеси в цилиндрах (например, калильного зажигания).
Основная проблема детонации не в том, что топливо-воздушная смесь воспламенилась не в «свое» время, а в том, что скорость распространения этого огня в 500-1000 раз больше чем в случае обычного «поджига» от свечи.
Именно ударная волна и приводит ко всем негативным последствиям детонации.
Чтобы было понятно, о какой напасти идет речь, перечислим негативные моменты, которые детонация оказывает на двигатель.
1. Все элементы мотора получают перегрузки, что заметно сокращает их ресурс. Особенно страдают поршни и коленвал.
Поврежденный поршень из-за детонации
2. Из-за повышения температуры увеличивается риск прогара клапанов и прокладки головки блока.
Прогоревший клапан
3. Детонационная волна смывает масляную пленку со стенок цилиндров, что может привести к задирам.
Задир в цилиндре
Кстати, характерный звук при возникновении детонации это вовсе не стук пальцев, как принято считать, а удары взрывной волны от детонации по стенкам цилиндров. Если бы пальцы двигателя были настолько изношены, что издавали бы такие звуки, то владельцу этого мотора надо было бы думать не о детонации, а о капремонте.
Причины возникновения детонации
Понятно, что детонация это прежде всего самовоспламенение. Но почему смесь вообще самопроизвольно загорается? В идеальных условиях этого не происходит, однако стоит появиться нескольким дополнительным факторам и тепловая работа двигателя нарушается. И тут сразу жди детонацию.
1. Неправильное октановое число бензина. Двигатель проектируется инженерами под использование топлива определенного типа. Степень сжатия, форма камеры сгорания, сечение клапанов все это выбирается с учетом характеристик топлива.
Если использовать бензин, у которого октановое число ниже, то все расчеты нарушаются, а топливо-воздушная смесь начинает детонировать. Это справедливо и для топлива с различными присадками, которое формально по ОЧ подходит.
Кстати, у газа октановое число очень высокое, больше 100, поэтому при работе на газу детонация встречается очень редко.
2. Слишком раннее зажигание. Неправильный угол установки зажигания также один из факторов, которые приводят к детонации. Противоречие в том, что двигатель любит раннее зажигание, но его же любит и детонация, так что при настройке нужно найти компромисс, чтобы двигатель работал хорошо, но без детонации.
Угол опережения зажигания
В карбюраторную эпоху этот навык оттачивали годами, ведь выставлять зажигание приходилось ориентируясь только на слух и ощущения. Инжекторная эпоха эти навыки нивелировала.
Теперь зажиганием заведует электронный блок управления, а в самом двигателе встроен специальный датчик. При малейших намеках на детонацию, ЭБУ начинает регулировать угол зажигания.
При этом нужно понимать, что его возможности небезграничны – и полностью компенсировать другие факторы ЭБУ не может. Вот почему даже в инжекторную эпоху детонация не является пережитком прошлого.
3. Обедненная топливно-воздушная смесь.
Ситуация аналогичная зажиганию, раньше все регулировки были механические и неправильно настроенный карбюратор мог приводить к серьезной детонации, но теперь все в руках электроники, которая очевидных «косяков» не совершает. Не стоит забывать про случаи перепрошивки, когда мотор специально переводят на бедную смесь или проблемы с инжектором, из-за которых смесь в цилиндрах получается неправильной.
4. Неподходящие свечи. Использование свечей с характеристиками, которые отличаются от рекомендованных производителем, тоже может привести к детонации. Смесь сгорает не полностью и ее остатки начинают детонировать.
5. Нагар на стенках камеры сгорания. Закоксованность двигателя тоже один из факторов появления детонации. Слой отложений ухудшает теплоотвод, элементы двигателя сильно нагреваются и от них поджигаются остатки смеси.
Нагар на стенках
6. Манера вождения. Детонация не любит высокие обороты, когда цилиндры быстро «проветриваются», а у несгоревшей смеси мало шансов где-то дополнительно воспламениться.
Но детонация любит высокую нагрузку, топлива в цилиндры поступает много и сгорает оно не полностью. Из этого нетрудно сделать вывод – езда на низких оборотах со значительным нажатием педали газа это просто рай для детонации.
Водители часто про это забывают – поднимаются в горку на высоких передачах, пытаются резко ускориться чуть ли не с холостых оборотов, не меняют момент переключения передач при увеличении загрузки. Все это способствует детонации.
Правда, речь идет только о машинах с механическими коробками передач, «автоматы», вариаторы и «роботы» обычно настраивают, чтобы исключить такие режимы работы.
Борьба с детонацией
Водитель, который не обращает внимание на детонацию, серьезно сокращает ресурс двигателя и приближает его ремонт. Закрывать глаза на регулярное появление детонации нельзя, стоит задуматься над причиной.
1. Владельцу карбюраторного авто нужно проверить зажигание и карбюратор. Зажигание можно диагностировать самому, для этого есть выработанная годами рекомендация. Разогнаться до 40 км/ч, включить 4 передачу (речь, конечно, только о механике) и нажать педаль газа в пол.
В идеальной ситуации двигатель должен детонировать буквально пару секунд (если детонации совсем не будет значит зажигание слишком позднее), а потом перейти на нормальный режим работы.
Карбюратор в домашних условиях настроить труднее, тут и опыт нужен, и газоанализатор, так что с этим вопросом лучше в сервис.
2. У инжекторных автомобилей появление детонации чаще всего связано с некачественным топливом. Попробуйте поменять заправку или использовать бензин с более высоким октановым числом.
3. Всем водителям, вне зависимости от типа двигателя, стоит оценить манеру вождения. Общая рекомендация – не «насиловать» двигатель на низких оборотах, а выбирать режим работы двигателя в зависимости от степени открытия дросселя. При постоянных стояниях в пробках есть рекомендация периодически раскручивать двигатель до отчески, чтобы сжигать образовавшийся нагар.
Как видите, бороться с детонацией не трудно, но эти простые меры помогут продлить жить двигателя и избавят водителя от многих проблем.
С уважением, Александр Нечаев.
Источник: https://avtoexperts.ru/article/detonatsiya-dvigatelya-prichiny-i-sposoby-bor-by/
Детонация двигателя – признаки, причины, способы устранения + видео
Многие водители уже знают, что такое детонация двигателя при выключении, причины этого явления могут быть самыми разными. Но все же дадим определение этому понятию.
Детонация – это своеобразная ударная волна, образованная самовоспламенившимся топливом еще до момента критических условий для естественного возгорания горючей смеси, то есть до прихода искры от свечи зажигания или до достижения нужного давления (в дизелях).
Одной из причин ее демонстрации является слишком раннее зажигание, что можно определить по характерному звонкому стуку в двигателе. Возникает он в результате преждевременного воспламенения горючей смеси.
При правильной установке угла опережения зажигания смесь воспламеняется немного, не доходя до верхней мертвой точки (2-3 градуса). То есть начало вспышки происходит тогда, когда поршень еще не закончил восходящее движение, а завершается в момент начала возврата в нижнюю мертвую точку.
Если же воспламенение происходит слишком рано, то возникает обратный удар, что и вызывает неприятный звук детонации двигателя. Еще одна причина детонации – это применение топлива с более низким октановым числом, чем предусмотрено правилами эксплуатации данного автомобиля.
К чему это приводит? В результате использования низкооктанового топлива в камере сгорания происходит образования нагара (сажи), а это приводит к критическим последствиям.
Многие водители сталкивались с тем, что после выключения зажигания двигатель не останавливается, а продолжает работать рывками, издавая неприятный звон. В такие моменты раскаленный нагар фактически играет роль свечи зажигания. Воспламенение топливной смеси происходит хаотично.
К чему приводит сильная детонация двигателя, признаки которой изложены выше?
- Во-первых, существенно падает мощность мотора и происходит интенсивный износ деталей кривошипно-шатунного механизма.
- Во-вторых, в результате этих негативных процессов двигатель сильно перегревается, что приводит к разрушению поршней и поверхности цилиндров.
- В-третьих, если не устранить причину детонации, может прогореть прокладка под головкой цилиндров.
Иногда для увеличения крутящего момента повышают угол опережения зажигания, что является одной из самых распространенных причин возникновения детонации. Существенно увеличивается риск ее появления, если осуществлялось самостоятельное и неоправданное изменение заводских регулировок для соотношения в горючей смеси топлива и воздуха (обедненная смесь).
Естественно, мы должны посоветовать, как устранить детонацию двигателя, приступим.
- Детонация не возникает на пустом месте. Если до заправки двигатель работал, как часы, а после нее стал детонировать, то причина может быть в топливе, которое необходимо слить и заправить автомобиль качественным бензином (соляркой).
- При продолжительной эксплуатации автомобиля без существенных нагрузок возможно образование нагара в цилиндрах, что вызывает увеличение степени сжатия и снижение эффективности отвода тепла. Существует простой способ решения этой проблемы. Рекомендуется раз в несколько дней давать двигателю максимальную нагрузку, то есть разогнать автомобиль до максимальной скорости буквально на пару минут. Только не стоит этого делать в условиях плотного потока городского транспорта.
- Иногда детонация дизельного двигателя сопровождается черным или зеленоватым выхлопом. Это говорит о том, что в цилиндрах произошло разрушение поршней, и через выхлопную трубу вылетают частицы алюминия. В этом случае простыми регулировками уже ничего не исправить. Потребуется замена поршневой группы.
- Небольшая детонация при запуске двигателя может возникать в результате нарушения работы свеч зажигания. На дизельном моторе это происходит, если запала игла форсунки. В первом случае ничего не стоит просто заменить неисправные свечи, а вот во втором – не обойтись без посещения СТО.
Источник: https://carnovato.ru/priznaki-prichiny-detonacii-dvigatelja-vkljuchenii-vykljuchenii-2/
что это такое, причины возникновения и последствия
В обычных условиях сгорание топливно-воздушной смеси происходит в двигателе в спокойном режиме – пламя распространяется со скоростью около 20-50 м/с, давление в цилиндре нарастает равномерно, без выраженных скачков. Однако, когда автомобиль работает в условиях повышенной нагрузки, например, при подъеме в гору, при резком нажатии на педаль акселератора, горение в цилиндрах может приобретать совершенно другой характер. В двигатель подается большее количество горючей смеси, давление многократно возрастает, и топливо, смешанное с воздухом, воспламеняется самопроизвольно. Такой процесс похож своими физическими характеристиками на миниатюрный взрыв и называется детонацией.
Что такое детонация
Нормальное сгорание топливо-воздушной смеси.
Под воздействием критически высокого давления и экстремальных температур, которые возникают при увеличении объема попадающей в цилиндры топливно-воздушной смеси, из несгоревших ее остатков образуются такие вещества, как спирты, альдегиды и т.д. При продолжающемся давлении такие соединения достигают своих критических состояний и вступают в окислительные реакции, приводящие к самовозгоранию смеси, сопровождающемуся подобием взрыва и высвобождением большого объема энергии. В зоне образования такого взрыва температура достигает предельных значений, а образующаяся взрывная волна распространяется со скоростью достигающей 2300 м/с. Этот разрушительный процесс и называют детонацией.
Ударяясь о стенки цилиндров, волна вызывает характерные металлические звуки — детонационные стуки которые бывалые автомобилисты определяют как «звенящие пальцы». Однако это определение неправильное – стучат не поршневые пальцы, а именно внутренние поверхности цилиндров.
В нормальных условиях воспламенение рабочей смеси происходит, когда поршень находится в в своей верхней точке – то есть когда давление в цилиндре максимально. Детонация же возникает тогда, когда поршень еще проходит такт сжатия. В результате давление резко повышается и давит на поверхность поршня, оказывая тем самым противодействие его движению вверх. Это приводит к повышенным нагрузкам на всю поршневую группу и, как следствие, ее преждевременному выходу из строя.
Причины возникновения детонации в двигателе
Сгорание топливо-воздушной смеси с детонацией.
Детонация двигателя может появляться вследствие действия различных факторов, которые объединяет общий признак – стремительное окисление и сокращение времени задержки самовозгорания той части ТВС, которая не сгорела в нормальных условиях. К основным факторам возникновения детонации в цилиндрах относятся следующие:
- Соотношение бензина и воздуха в горючей смеси. При работе на смеси с недостатком бензина или избытком воздуха в цилиндрах под воздействием температуры и давления образуются очаги интенсивного окисления, которые и приводят к самовоспламенению топлива.
- Большая величина угла опережения зажигания. Данная характеристика показывает, в какой момент сжатия ТВС подается искра, и чем позже это происходит, тем более высокое давление успевает создаться в цилиндрах. А именно это и приводит к детонации.
- Неправильный выбор свечей. Каждый тип свечей зажигания обладает индивидуальными тепловыми характеристиками, которые должны соответствовать модели двигателя, установленного на автомобиль.
- Октановое число используемого цилиндра. Чем меньше октановое число, тем выше вероятность взрывного самовоспламенения топливно-воздушной смеси. Это обусловлено тем, что при снижении данной характеристики возрастает химическая, прежде всего окислительная, активность топлива. Поэтому очень важно соблюдать рекомендации автопроизводителя и выбирать рекомендованную им марку бензина.
- Степень сжатия. Данная характеристика понимается как отношение объема камеры сгорания к общему объему цилиндра. Чем выше степень сжатия, тем выше значения образуемого давления и температуры. А эти условия, как уже отмечено выше, являются основными провокаторами детонации. Чтобы нивелировать высокую степень сжатия, следует использовать высокооктановое топливо.
- Особенности и дефекты двигателя. Детонацию могут провоцировать:
- недостаточное охлаждение несгоревшей часто горючей смеси, остающейся в цилиндрах;
- неэффективная конструкция камеры сгорания, приводящая к задержкам догорания топлива;
- проблематичное отведение тепла от головки поршня к телу цилиндра, вызванное неправильной формой поверхности поршня;
- цилиндры чрезмерно большого диаметра – это приводит к ухудшению отвода тепла, увеличению числа участков, удаленных от свечи, где и формируются детонационные очаги.
Зачем нужен датчик детонации
Как выглядит датчик детонации.
В конструкции многих двигателей на блоке цилиндров имеется такой модуль, как датчик детонации. Его основная задача заключается в отслеживании процесса сгорания ТВС в цилиндре и автоматическом изменении параметров зажигания и качества горючей смеси. Принцип действия датчика основан на акселерометрии – он трансформирует энергию колебаний блока цилиндров в электрические импульсы, которые в виде сигналов посылаются в блок управления мотором. Здесь сигналы расшифровываются, и электроника вносит коррективы в величину угла опережения зажигания и соотношение бензина и воздуха в рабочей смеси.
Конструкционно датчик детонации представляет собой пьезоэлектрический элемент, размещенный в защитном корпусе. При возникновении детонации на краях данного элемента образуется напряжение. И чем выше амплитуда и частота механических колебаний блока цилиндров, тем больше становится величина данного напряжения.
Однако возможности роста напряжения принудительно ограничены на уровне определенного критического значения. При его превышении в блок управления двигателем отправляется соответствующая команда, которая уменьшает угол опережения зажигания и/или изменяет соотношение бензина и воздуха в ТВС. При отключении датчика от двигателя, но сохранении связи с блоком управления, электронная система начинает работать в режиме «все в порядке», не реагируя на возникающую детонацию. Поэтому исправность указанного датчика имеет большое значение для сохранения работоспособности двигателя и предотвращения его преждевременного износа.
Последствия детонации
Происходящая в цилиндрах детонация оказывает на механическую начинку автомобиля широкий спектр негативных воздействий. Наиболее существенными из них являются следующие:
- Повышенные нагрузки на весь кривошипно-шатунный механизм приводят к его скорому выходу из строя. Здесь страдают и коленвал, и шатунные и коренные вкладыши. Также повреждения получает и поверхность поршней. Воздействие может быть настолько сильным, что поршни покрываются множеством выщерблин и сколов, их кромки скругляются, а перемычки между маслосъемными кольцами разрушаются.
- Температура двигателя существенно повышается, нарушается процесс его охлаждения, что приводит к деформации цилиндров и поршней, а в отдельных случаях даже к прогоранию ГБЦ.
- Масляная пленка на стенках цилиндров при контакте с взрывной волной разрушается, что дополнительно ускоряет износ элементов двигателя.
- Также детонация в двигателе приводит к уменьшению его мощности и возрастанию расхода топлива.
Для того, чтобы защитить свой двигатель от таких последствий, следует внимательно относиться к его состоянию. Самая простая и важная мера – использование качественного топлива с оптимальным октановым числом. Кроме того, нужно следить за состоянием свечей – при покрытии электрода нагаром, уменьшении зазора зажигание становится менее эффективным, что приводит к детонациям. Важным нюансом также является исправность охлаждающей системы – в ней должно быть достаточно антифриза, в радиаторе не должно быть течей, а вентилятор должен эффективно отводить горячий воздух.
Видео на тему
Похожие публикации
К чему приводит детонация двигателя
Процесс, при котором происходит неконтролируемое самовозгорание топливовоздушной смеси в цилиндрах, называется детонация двигателя. Данный дефект является взрывом, он производит разрушительные действия на узлы и детали силовых агрегатов любого вида. В физическом смысле детонация представляет из себя разрушительную взрывную волну, созданную при избыточном давлении и сверхвысокой температуре топлива.
Описание детонации и ее последствий
Во время разгона автомобиля водитель давит на педаль акселератора, топливная смесь, попадая в цилиндры, испытывает воздействие очень высокого давления и температуры. Давление возрастает от перемещения поршня вверх и возгорания топлива от свечи накаливания. Пламя, расползаясь по камере сгорания, генерирует добавочное давление.
Под воздействием сверхвысокой температуры и возросшего давления остатки горючей смеси самовоспламеняются, создавая одну за другой взрывные волны со стремительным возрастанием амплитуды.
Возникает эффект неконтролируемой цепной реакции, в ходе которой пламя на огромной скорости давит на гильзу, обороты двигателя растут до бесконечности — движок идет вразнос, раскручиваясь самопроизвольно. Такую ситуацию трудно взять под контроль.
Последствия детонации двигателя выражены появлением следующих поломок:
- Срыв кромок поршней.
- Повреждение стенок цилиндров.
- Разрыв прокладки головки цилиндров.
- Поломка датчика дроссельной заслонки.
При стабильной работе мотора происходит равномерное сгорание топливной смеси с последующей передачей энергии на поршни.
Причины возникновения детонации при включении мотора на холодную
Детонация при запуске двигателя возникает при поступлении в один или несколько цилиндров обедненных топливовоздушных смесей. Причиной обеднения смеси является засоренность специальных распылителей — форсунок.
При появлении засоров, нарушается расчетная величина объема подаваемого топлива. Чтобы установить причину появления засорения, необходимо произвести проверку фильтра грубой очистки, а также фильтров каждой форсунки.
Холодный мотор после прогрева часто восстанавливает свою работу, и детонация двигателя прекращается.
Корректировка работы двигателя при помощи электронного управления
Электронный блок управления (ЭБУ), установленный в автомобилях с инжекторным двигателем, регулирует параметры топливной смеси. При помощи ЭБУ производится коррекция угла опережения зажигания с вынужденным снижением объема впрыскиваемой топливной смеси.
Причины детонации частично исчезают, но в результате подобного регулирования мощность силового агрегата существенно снижается. При высоком уровне засоренности форсунок ЭБУ не всегда может осуществлять компенсирующие функции.
Детонация мотора после прогрева
Причины детонации прогретого мотора:
- поломан датчик заслонки;
- использование топлива, имеющего низкое октановое число;
- неисправность и засор форсунок.
После восстановления или замены датчика заслонки двигатель готов к эксплуатации на любых, в том числе и на повышенных режимах. Узнать, есть ли детонация двигателя, причины ее возникновения на прогретом моторе, можно только под нагрузкой при включенной передаче.
Низкое качество топлива, пониженное значение его октанового числа является одной из основных причин, которые способствуют повышению температуры в камере сгорания и увеличению давления в топливных цилиндрах, приводящих к возникновению взрывов.
Чем выше данный показатель топлива, тем лучше оно противостоит самовоспламенению и детонации. Высокое значение октанового числа бензина — это антидетонационный индекс.
Влияние качества топлива и свечей зажигания
Детонация двигателя также может быть вызвана нарушением хрупкого баланса между двумя факторами:
- качество свеч зажигания;
- сила сжатия топлива.
Применение неверно подобранных свечей зажигания, может явиться причиной возникновения детонации в двигателе. Назначение данных приборов состоит в контроле внутренней среды двигателя, от точности срабатывания свечей зависит своевременность и качество сгорания топлива.
При нарушении режима сжигания топлива происходит наращивание температуры в камере сгорания и перегреву элементов силового агрегата, приводящее к детонации. Чтобы устранить появившийся дефект, необходимо сменить имеющиеся свечи зажигания на другой рекомендуемый вид.
Недостаточное сжатие топлива в цилиндрах приводит к неполному сгоранию смеси и прилипанию оставшихся компонентов к стенкам цилиндров в виде нагара. В зависимости от качества бензина и уровня очистки топлива происходит образование отложений нагара, что существенно уменьшает объем цилиндра и вызывает детонацию.
Для уничтожения вредных отложений применяются специальные присадки или производится замена марки топлива на другую.
Устранение детонации мотора
На появление детонации инжекторного двигателя влияют следующие параметры:
- Угол опережения зажигания.
- Обеднение топливной смеси.
Многих автовладельцев интересует, как устранить детонацию двигателя своими руками. Для того чтобы избавиться от взрывного горения горючих смесей, умельцы часто используют следующие приемы:
- Эксплуатация движка на более высоких передачах. При работе на высокой скорости сокращается время сгорания топлива на фоне максимального давления. Разгон автомобиля приводит к снижению вероятности появления детонации.
- Замена свечей зажигания.
- Увеличение влажности воздуха. Более влажный воздух существенно снижает температуру в камере сгорания.
- Использование охладителя воздуха интеркулера для снижения температуры воздуха перед нагнетанием его в цилиндры.
- Замена бензина на топливо, имеющее более высокое октановое число.
- Перемещение трамблера для изменения угла опережения зажигания в сторону уменьшения для стабильной работы карбюраторного двигателя на холостых оборотах.
- Торможение двигателя для опережения момента зажигания.
Применение метода корректировки положения трамблера используется на короткое время, чтобы добраться до ближайшей автозаправки и сменить топливо на более высокооктановый бензин. После этого трамблер необходимо установить в прежнее положение для обеспечения оптимального значения угла опережения.
Бывают случаи, когда автовладельцы осознанно производят корректировку угла опережения зажигания в сторону увеличения, обедняя горючую смесь. В результате происходит повышение динамических характеристик автомобиля, увеличивается крутящий момент. При проведении данной операции существенно возрастает вероятность появления детонации двигателя.
Устранение или уменьшение детонации двигателя является сложной задачей. Чтобы выявить настоящую причину возникновения взрывов внутри мотора, необходимо тщательно изучить принцип работы силового агрегата и понять, что способствует их появлению.
Признаки появления детонации движка
В результате ударных нагрузок, возникающих при взрывах, появляются характерные звуки в виде звонкого стука, изменяется состав и цвет выхлопных газов, детали двигателя получают серьезные дефекты. Кроме ярких шумовых эффектов, имеются внешние признаки появления детонации:
- кратковременный выход черного дыма из выхлопной трубы;
- уменьшение температуры отработавших газов;
- кратковременная потеря мощности двигателя;
- потеря управления работой двигателя вследствие ее неустойчивости;
- критический перегрев элементов движка.
Элементы, входящие в состав силового агрегата, изготовлены с расчетом на работу при определенных значениях температуры и давления. Ударные нагрузки, возникающие при детонации, превышают все допустимые значения.
Детонационный эффект является наиболее опасным для транспортного средства. Он может возникнуть при неравномерном распределении воздуха и топлива внутри цилиндров, что приводит к внезапным неконтролируемым взрывам.
Для своевременного выявления данного дефекта нужно регулярно контролировать появление посторонних звуков и постукиваний, исходящих со стороны силового агрегата транспортного средства. Именно источники этих звонких сигналов нужно выявить и немедленно убрать причину их возникновения.
Детонация является потенциальной опасностью для движка, поэтому ее нужно постоянно держать под контролем. Она не должна присутствовать при нормальной работе двигателя. Даже небольшой шум в двигателе необходимо постоянно исследовать и убирать причины, вызвавшие его.
Обзор последних достижений в области двигателей с импульсной детонацией
Двигатели с импульсной детонацией (PDE) — это новые захватывающие двигательные технологии для будущих двигателей. Рабочие циклы ПДД состоят из топливовоздушной смеси, горения, продувки и продувки. Процесс сгорания в импульсном детонационном двигателе является наиболее важным явлением, поскольку он производит надежные и повторяемые детонационные волны. Возникновение детонационной волны в детонационной трубе в практической системе представляет собой совокупность явлений многоступенчатого горения.Детонационное горение вызывает быстрое горение топливовоздушной смеси, что в тысячу раз быстрее, чем при дефлаграционном режиме процесса горения. PDE использует повторяющуюся детонационную волну для создания тяги. В данной статье обсуждается подробный обзор различных экспериментальных исследований и вычислительного анализа, посвященного детонационному режиму горения в импульсных детонационных двигателях. Влияние различных параметров на улучшение тяговых характеристик импульсного детонационного двигателя было подробно представлено в данной исследовательской работе.Замечено, что конструкция пути потока детонационной волны в детонационной трубе, эжекторов на выходе из детонационной трубы и рабочие параметры, такие как числа Маха, в основном отвечают за улучшение характеристик тяги PDE. В настоящей обзорной работе также предлагается дальнейший объем исследований в этой области.
1. Введение
В настоящее время внимание исследователей в области двигательной установки со всего мира обращено на исторический фон импульсных детонационных двигателей, термодинамический анализ, инициирование детонации и переход от дефлаграции к переходному устройству детонационной волны в качестве основного предмета исследования. область исследований детонационного горения.Еще одно обзорное исследование модели вращающегося детонационного двигателя и его применения в аэрокосмическом и турбомашинном оборудовании, а также производительности также включено в эту область. В них участвуют исследователи из США, России, Японии и Китая, Германии и Малайзии. Количество исследовательских публикаций значительно увеличилось за последние несколько десятилетий. Основным преимуществом детонационного горения было создание ударной волны, за которой следует волна горения [1]. Пратт и Уитни начали разработку двигателя с импульсной детонацией в 1993 году.Их исследовательский подход заключался в изучении перехода от дефлаграции к детонации через импульсный детонационный двигатель [2]. Технико-экономическое обоснование реакционного устройства, работающего на прерывистой газовой волне детонации, рассматривается Nicholls et al. [3]. Они провели исследование по изучению тяги, расхода топлива, воздушного потока и температуры во всем диапазоне рабочих условий. В последнее время во многих странах большое внимание уделяется исследованиям многомодового комбинированного детонационного двигателя в двигательной установке гиперзвуковых летательных аппаратов [4].Кайласанатх [5] изучил обзор практической реализации на импульсном детонационном двигателе, и переход от дефлаграции к детонации также изучался в геометрии препятствия. И снова Кайласанатх изучал разработку импульсного детонационного двигателя. Параметры детонационного горения, такие как скорость Чепмена и давление, хорошо определены в этом исследовании [6]. Уилсон и Лу [7] обобщили комплексные исследования силовой установки на основе PDE и RDE. Они сфокусировали детонационные волны для моделирования гиперзвукового потока и выработки электроэнергии.Смирнов и др. В [8] проведено численное моделирование детонационного двигателя с питанием от топливно-кислородной смеси. Преимущество цикла сгорания с постоянным объемом по сравнению с сгоранием с постоянным давлением было с точки зрения термодинамической эффективности, сосредоточенное на усовершенствованной силовой установке на детонационном двигателе.
2. Обзоры экспериментального анализа
Chen et al. [9] экспериментально исследовали влияние сопла на тягу и давление на входе воздушно-импульсного детонационного двигателя. Их результаты показали, что увеличение тяги сходящегося-расширяющегося сопла, расширяющегося сопла или прямого сопла лучше, чем у сходящегося сопла во всех рабочих условиях.Ли и др. [10] провели эксперимент на модели PDRE с использованием керосина в качестве топлива, кислорода в качестве окислителя и азота в качестве продувочного газа. Тяга и удельный импульс исследованы экспериментально. Полученные ими результаты показали, что тяга тестовой модели PDRE была примерно пропорциональна частоте детонации. Средняя по времени тяга была около 107 N. Yan et al. В [11] изучалась работа импульсного детонационного двигателя с колоколообразным сходящимся-расходящимся соплом. Этот эксперимент проводился с использованием керосина в качестве жидкого топлива, кислорода в качестве окислителя и азота в качестве продувочного газа.Их результаты испытаний показали, что максимальное увеличение тяги составляет примерно 21%. Allgood et al. В [12] экспериментально измерена затухающая тяга многоциклового импульсного детонационного двигателя с выхлопным соплом. Их результаты показали, что расширяющееся сопло увеличивает производительность с увеличением фракции заполнения. Peng et al. [13] изучали эксперименты с двухфазным двухтрубным воздушно-импульсным детонационным двигателем (APDE), чтобы лучше понять характеристики бесклапанного многотрубного APDE. Из экспериментальных результатов видно, что сравнение одно- и двухтрубного горения и режима работы однотрубного горения полезно для уменьшения возмущений в общем входе воздуха.Ян и др. [14] экспериментально исследовали импульсный детонационный ракетный двигатель с форсунками и соплами. Инжекторы испытывали на распыление и смешивание двухфазных реагентов. Они заметили, что форсунки являются критическим компонентом для улучшения характеристик PDE. По результатам испытаний они отметили, что сопло с высоким коэффициентом сжатия и высоким коэффициентом расширения генерировало максимальное увеличение тяги — 27,3%. Kasahara et al. [15] испытывали ракетную систему «Тодороки» в различных условиях эксплуатации.Максимальная тяга выдавалась чуть выше 70 Н при удельном импульсе до 232 с. Частота системы даже при постоянной подаче топлива изменялась в диапазоне 40–160 Гц. Copper et al. [16] измерил импульс с помощью баллистического маятника для детонации и дефлаграции в трубе, закрытой с одного конца. Они также изучили влияние внутренних препятствий на переход от горения к детонации (см. Рисунок 6). Их экспериментальные результаты и предсказания аналитической модели согласуются в пределах 15%.Хинки и др. [17] экспериментально продемонстрировал роторно-клапанную камеру сгорания импульсного детонационного двигателя для высокочастотной работы. Их серия экспериментов была проведена на роторно-вентильной однокамерной камере сгорания и роторно-вентилируемой многокамерной импульсной детонационной машине. Основными параметрами измерения являются тяга, а также история давления на стенке камеры сгорания, окислитель и массовый расход топлива (см. Рисунок 14). Их концепция работы системы была успешно продемонстрирована в многотопливной газовой турбине PDE. В Японии недавно была изготовлена однотрубная ракетная система импульсного взрыва, которая может скользить по рельсам.В тесте скольжения система проработала 13 циклов на частоте 6,67 Гц [18]. Ли и др. В [19] проиллюстрирована зона инициирования детонации в детонационной камере. Эта детонационная трубка была закрыта на одном конце и открыт на другом, в состав которой входят тяги стенки и секции зажигания. В этом эксперименте использовались три спиралевидных внутренних канавки, такие как канавки полукруглого, квадратного и перевернутого треугольника. Результаты показали, что спиралевидная внутренняя канавка может эффективно усиливать ДДТ. Асато и др.[20] экспериментально исследовали влияние быстрого распространения пламени, скорости вращения и размера спирали Щелкина в вихревом потоке на характеристики ДДТ. Создавалось вихревое течение, чему способствовали размеры спирали Щелкина, а расстояние ДДТ в вихревом потоке можно было сократить на 50–57%. New et al. [21] экспериментально исследовали спиральное действие Щелкина на многоцикловом импульсном детонационном двигателе. Эффективность параметров спирали Щелкина на явление ДДТ изучалась с использованием пропан-кислородной смеси при низкоэнергетическом источнике воспламенения.Также были изучены различные конфигурации, такие как коэффициент блокировки спирали и отношение длины спирали к диаметру. В этих исследованиях были успешными конфигурации с более короткой длиной и наивысшим коэффициентом блокирования, и был достигнут устойчивый уровень ДДТ. Wang et al. [22] выполнили ряд экспериментов по спиральной конфигурации в импульсном детонационном двигателе. Их анализ предоставил проектные данные для правила перехода от дефлаграции к детонации в искривленной детонационной камере. Некоторые эксперименты были проведены с использованием девяти трубок в экспериментах на сопротивление, и результат показывает, что в прямой трубке не образуется детонационная волна, но на выбранных спиральных трубках были получены полностью развитые детонационные волны.Panicker et al. [23] изучали конкретные методы перехода от горения к детонации, которые были рассмотрены, включая спирали Щелкина, канавки, сходящиеся-расходящиеся сопла и диафрагмы. Они отметили, что спираль Щелкина должна быть лучшим исполнителем для перехода от дефлаграции к детонационной волне среди других устройств повышения концентрации ДДТ.
Валиев и др. [24] исследовали «Ускорение пламени в каналах с препятствиями при переходе от дефлаграции к детонации». Они обнаружили, что механизм препятствий намного сильнее ускоряет пламя дефлаграции до волны детонации.Физический механизм ускорения дефлаграционного пламени в преграде существенно отличается от спирального механизма Щелкина. Механизм препятствий намного сильнее для перехода от дефлаграции к детонационной волне и зависит от условий эксплуатации. Механизм вязкого нагрева также был идентифицирован с соответствующими изменениями геометрии препятствия. Gaathaug et al. В [25] численно исследован переход от горения к детонации в турбулентной струе за препятствием. Спиральные внутренние канавки и канавки в виде перевернутого треугольника были протестированы на предмет увеличения ДДТ, и результаты показали, что спиралевидные внутренние канавки могут эффективно повышать уровень ДДТ.Moen et al. В [26] изучалось влияние препятствий на распространение цилиндрического пламени. Скорость свободно расширяющегося пламени цилиндрического типа зависит от конфигурации препятствия и достигнутой соответствующей турбулентности на пути распространения препятствия пламени.
Ogawa et al. [27] изучали ускорение пламени и ДДТ в квадратном массиве препятствий, решая уравнения Навье-Стокса. Расчетное моделирование показывает, что ускорение дефлаграционной волны происходило от серии препятствий. Йохансен и Чиккарелли [28] исследовали влияние коэффициента блокирования препятствий на развитие поля потока несгоревшего газа для переменной высоты препятствия.Вычислительное моделирование показывает, что образование турбулентности увеличивается с увеличением количества засоров. Gamezo et al. [29] численно исследовали ускорение дефлаграционной волны и переход от дефлаграции к детонации в закупоренных каналах. Из моделирования они заметили, что детонация зажигается, когда стержень Маха, образованный дифрагирующим скачком, отражающимся от боковой стенки, сталкивается с препятствием. Йохансен и Чиккарелли [30] изучали влияние коэффициента блокирования препятствий на развитие поля потока несгоревшего газа перед фронтом пламени в канале препятствий с использованием моделирования крупных вихрей.Моделирование показывает, что образование турбулентности увеличивается с увеличением количества препятствий. Квазидетонационный режим характеризуется средней скоростью пламени, которая существенно зависит от геометрии детонационной трубы (см. Рисунок 1) [31]. Серия испытаний высокочастотной детонационной волной проведена Хуангом и др. [32] в маломасштабном импульсном детонационном двигателе, использующем керосин-воздух в качестве окислителя топлива для достижения эффективности увеличения количества ДДТ. Они заметили, что расстояние от ДДТ и время перехода сократились.Руди и др. [33] исследовали, что ускорение пламени в засоренном канале имеет важное применение в сверхзвуковой двигательной технике. Механизм ДДТ в водородно-воздушных смесях экспериментально исследован в преграде канала с использованием профилей давления, скоростей волн и численных расчетов. Их результаты также показывают, что коэффициент блокирования препятствий и расстояние между ними сильно влияют на стабильность скорости детонационной волны. Бакланов и др. Провели эксперимент со слабой тягой на импульсном детонационном двигателе.[34]. Проведены испытания влияния окислителя на режим работы двигателя кольцевой преграды на переход от горения к детонации. В этом испытании использовалась смесь воздух-водород и воздух-углеводород.
Ciccarelli et al. [42] экспериментально исследовали влияние блокировки препятствия на скорость ускорения пламени и на конечную квазистационарную скорость острия пламени. В гладкой трубе переходная детонация происходит, когда ускорение пламени в конечном итоге приводит к конечной скорости ниже 1000 м / с.Скорость свободно расширяющегося цилиндрического пламени зависит от конфигурации препятствия и достигнутой соответствующей турбулентности на пути потока пламени препятствия. Gamezo et al. [43] экспериментально исследовали ускорение пламени и ДДТ в водородно-воздушной смеси в заградительном канале с помощью 2D и 3D численного моделирования реактивного движения Навье-Стокса и наблюдали режимы распространения сверхзвукового турбулентного пламени, квазидетонации и детонационного пламени за ведущей ударной волной. . Йохансен и Чиккарелли [44] изучали влияние коэффициента перекрытия препятствий на развитие поля несгоревшего потока газа с использованием переменной высоты препятствия.Влияние коэффициента блокировки на ускорение пламени исследовали в закрытом канале квадратного сечения. Паксон [35] разработал простой вычислительный код для определения воздействия ДДТ (см. Рисунок 8), усиливающего препятствия на импульсном детонационном двигателе (см. Рисунки 4 и 7). Моделирование должно было изучить относительные вклады сопротивления и теплопередачи. Двигатель с импульсной детонацией заметил, что передача тепла более значительна, чем аэродинамическое сопротивление. Фролов [36] исследовал переход от горения к детонации в газокапельной воздушно-топливной смеси.В этом исследовании отражающие элементы могли бы улучшить быстрый переход горения к детонации керосино-воздушной смеси. Теодорчик [37] экспериментально исследовал распространение пламени, используя каналы высотой 0,01, 0,02, 0,04 и 0,08 м. В данной работе были установлены скорости распространения пламени в засоренном канале. В результате экспериментов установлено, что установились режимы перехода от горения к детонации и распространения пламени.
Frolo et al. [45] изучали характеристики детонации в трубе с U-образным изгибом для моделирования ДДТ, и их анализ пришел к выводу, что U-образный изгиб полезен для более быстрого ДДТ.Фролов и др. [38] исследовали переход от ударной волны к детонации в U-образной трубе экспериментально и с помощью расчетов. Результаты моделирования продемонстрировали значительное влияние U-образного изгиба трубы на инициирование детонации. Семенов и др. [46] предложили параболическое сжатие и коническое расширение для инициирования детонации в трубе. Стена блестящей формы предлагается для оптимизированной геометрии конического расширения. Они заметили, что минимальная скорость падающей ударной волны м / с приблизительно равна числу Маха 2.U-образный изгиб используется для оптимизации конструкции импульсного детонационного двигателя Фроловым и др. [39]. Численное моделирование этого процесса оптимизации выявляет некоторые особенности перехода от дефлаграции к детонации в U-образных трубах.
Эжектор — устройство, которое размещается после выхода импульсной детонационной камеры сгорания коаксиально с детонационной трубой и используется для реализации тяговых характеристик. Allgood и Gutmark [47] предоставили двухмерные эжекторы для импульсного детонационного двигателя для параметрического исследования, и наблюдались характеристики геометрии впуска и осевого положения относительно выпускной секции PDE.Ян и др. [48] провели эксперимент на маломасштабном ракетном двигателе с импульсной детонацией (см. Рисунок 5), который использовался в качестве предетонатора для инициирования детонации в его эжекторах. В этом эксперименте они обнаружили, что распространение пламени вверх по потоку на входе в эжектор было неизбежным, что влияло на процесс инициирования детонации в эжекторе. Другое экспериментальное исследование было выполнено Баем и Венгом [49] для изучения влияния эжектора на работу импульсного детонационного двигателя.Их результаты показали, что увеличение тяги увеличивается при высокой рабочей частоте. Canteins et al. [50] экспериментально, а также численно обнаружено, что характеристики PDE изменяются с тремя параметрами геометрии эжектора, то есть, внутренний диаметр, длина эжектора, а также позиции эжектора по отношению к упорной стенки камеры сгорания. Для этих конфигураций эжектор увеличивает удельный импульс до 60%. Cha et al. [51] предложили совместное влияние концепции байпаса и эжектора на анализ воздушно-импульсного детонационного двигателя.Результаты расчетов показали, что характеристики APDE определяются ударными потерями, вызванными горловиной и диаметром сопла. Эксперименты также были разработаны Санторо и др. [52], чтобы исследовать различные аспекты настройки PDE / эжектора. Результаты показывают, что при изучении геометрии достигается максимальное увеличение тяги на 24%. Линейная решетка и компактная коробчатая решетка детонационной трубы с осесимметричными эжекторами были исследованы Hoke et al. [53]. В этом исследовании вторичный поток контактировал с губой эжектора с помощью линейной детонационной трубки.Далее было обнаружено увеличение тяги в зависимости от расстояния от входа эжектора до выхода из детонационной трубы. Этот коэффициент увеличения тяги в 2,5 наблюдался при использовании конического эжектора, а также было замечено, что увеличение тяги зависит от расстояния между выходом из детонационной трубы и входом в эжектор. Максимальная тяга зависит как от положительного, так и от отрицательного значения этого расстояния [54]. Конфигурации конического эжектора и цилиндрического эжектора были испытаны Paxson et al. [55] для увеличения тяги.В результате этого испытания желаемые результаты достигаются при конфигурации конического эжектора. Glaser et al. [56] провели эксперимент по работе эжекторов с импульсным детонационным двигателем. В экспериментальных исследованиях использовалась смесь H 2 с воздухом в PDE с эжекторами для улучшения рабочих характеристик приводных аугментеров. В этом исследовании были исследованы прямые и расходящиеся эжекторы. Оптимальное осевое размещение было установлено после импульсного детонационного двигателя. Для улучшения характеристик эжектора, приводимого в движение воздушно-импульсным детонационным двигателем, были проведены эксперименты с конвергентным соплом на разных рабочих частотах Чангсином и др.[57]. Максимальное увеличение тяги получено в одноступенчатом эжекторе для. Коробов и Головастов [58] изучали эффективность воздействия эжектора детонационного двигателя, и их результаты показали, что использование эжектора позволяет увеличить тягу на 17%. Хуанг и др. В [59] экспериментально исследованы характеристики шумового излучения многоциклового импульсного детонационного двигателя с эжекторами и без них. Результаты показали, что уровень импульсного звукового давления увеличивается с увеличением рабочей частоты.Но система эжекторов показала, что эжекторы могут снизить уровень пикового звукового давления импульсного детонационного двигателя. Qiu et al. В [60] приведены характеристики работы аэродинамических клапанов импульсного детонационного двигателя для адаптивного управления топливом. Их экспериментальные результаты показали, что капли остаточного топлива движутся вверх по потоку с обратным потоком, за которым следует пламя, и пламя может распространяться через клапан.
Matsuoka et al. [61] разработали поворотный клапан для импульсного детонационного двигателя, чтобы проанализировать его основные характеристики и производительность, и они получили максимальную усредненную по времени тягу 71 Н.Опять же Мацуока и др. [62] разработали метод жидкостной продувки как новый подход к импульсной детонационной камере сгорания, и они отметили, что детонация успешно инициировалась этим методом. Fan et al. [63] экспериментально исследовали характеристики перемешивания и зажигания полностью развитой детонации в импульсном детонационном двигателе. Экспериментальные результаты показывают, что рабочие циклы должны быть как можно более близкими для достижения эффективного перемешивания. Фролов и др. [64] провели демонстрацию низкочастотного импульсного детонационного двигателя на жидком топливе, и их результаты показали, что ДДТ возникает на очень коротком расстоянии.Экспериментальное исследование было проведено Tangirala et al. [65] в многотрубной гибридной системе PDC-турбина. Было обнаружено, что КПД компонентов турбины аналогичен при работе с PDC. Ли и др. Провели серию экспериментов. [66] на импульсном детонационном двигателе с использованием жидкой керосин-кислородной смеси для исследования инициирования детонационной волны. Успешная волна детонации была достигнута, когда длина спирали (см. Рисунок 11) была увеличена в шесть раз по сравнению с внутренним диаметром детонационной трубы.Stevens et al. [67] экспериментально исследовали, что детонация создает ударную силу и расстояние между ударной волной и изолированным пламенем. Их наблюдения показали, что более высокое число Маха предпочтительнее при попытке повторно инициировать детонацию на отражающей рампе. Fan et al. [68] экспериментально исследованы на двухфазном импульсном детонационном двигателе, и полученные ими результаты показали, что средняя тяга ДДД приблизительно пропорциональна объему детонационной камеры и частоте детонации.Влияние небольших возмущений с изменяющимся коэффициентом блокировки на проблемы критического диаметра трубы исследовано Mehrjoo et al. [69]. Они обнаружили, что оптимальный коэффициент блокировки составляет приблизительно от 8% до 10%, и предположили, что он может быть полезен при проектировании силовой установки и силовой установки импульсных детонационных двигателей. Хуанг и др. [70] провели эксперимент с использованием жидкого керосина и наблюдали нагрев жидкого керосина, улучшающий характеристики двигателя, что было полезно для процесса перехода от дефлаграции к детонации.Экспериментальное исследование было проведено Deng et al. [71] для изучения работоспособности турбомашин, в которых работает одноступенчатая турбина с радиальным потоком турбокомпрессора в камере сгорания с импульсной детонацией. Их экспериментальные результаты показали, что экспериментальная установка может стабильно работать на частотах до 10 Гц. Cha et al. [72] разработали импульсное устройство для измерения температуры и концентрации потока для измерения температуры и концентрации пара в выхлопной трубе импульсного детонационного двигателя.Их экспериментальные результаты показывают, что частота температуры и давления одинакова, и их устройство способно быстро и точно улавливать каждый импульс детонации. Эксперимент по измерению тяги был проведен Морозуми и др. [73] с использованием четырехцилиндрового импульсного детонационного двигателя с поворотным клапаном. Их экспериментальные результаты достигли средней по времени тяги 258,5 Н и удельного импульса 138,7 с. Подробные особенности течения реактивного детонационного горения экспериментально исследовали Зитоун и Десборд [74].Они заметили, что отношение длины к диаметру камеры сгорания является наиболее важным для дефицита тяги и удельного импульса. Fan et al. [75] провели эксперимент по исследованию влияния предварительного нагрева топлива и добавления добавок на время инициирования детонации. По результатам этого анализа, полученного при добавлении добавок в жидкий керосин, время инициирования детонации было уменьшено с 0,75 мс до 0,34 мс.
3. Обзоры вычислительного анализа
Экспериментальный анализ в импульсном детонационном двигателе необходим для проведения тщательных наблюдений за моделированием детонационного горения; некоторые исследователи отметили, что в то же время численное моделирование не менее важно для визуализации явлений детонационного горения в камере сгорания PDE.Камера сгорания PDE с водородно-воздушной смесью и без препятствий была смоделирована Soni et al. [76] с использованием имеющегося в продаже кода CFD. Они заметили, что препятствия полезны для проектирования и разработки камеры сгорания PDE. Amin et al. [77] исследовали влияние различной геометрии сопла и условий эксплуатации на характеристики импульсного детонационного двигателя. Результаты CFD показывают, что расширяющееся сопло более эффективно, чем сходящееся-расширяющееся сопло при низком давлении окружающей среды.Tangirala et al. [78] смоделировал работу
2.6: Тангенциальная и нормальная составляющие ускорения
В этом разделе ускорение разбивается на две составляющие, называемые тангенциальной и нормальной составляющими. Подобно тому, как мы разбиваем все векторы на \ (\ hat {\ textbf {i}} \), \ (\ hat {\ textbf {j}} \) и \ (\ hat {\ textbf {k}} \ ) компоненты, мы можем сделать то же самое с ускорением. Добавление этих двух компонентов даст нам общее ускорение.
Введение
Мы привыкли рассматривать ускорение как вторую производную от положения, и хотя это один из способов взглянуть на общее ускорение, мы можем далее разбить ускорение на две составляющие: тангенциальное и нормальное ускорение.Тангенциальное ускорение, обозначенное \ (a_T \), позволяет нам узнать, какая часть ускорения действует в направлении движения. Нормальное ускорение \ (a_N \) — это то, насколько ускорение ортогонально касательному ускорению.
Помните, что векторы имеют величину И направление. Тангенциальное ускорение является мерой скорости изменения величины вектора скорости, то есть скорости, а нормальное ускорение является мерой скорости изменения направления вектора скорости.
Этот подход к ускорению особенно полезен в физических приложениях, потому что нам нужно знать, какая часть общего ускорения действует в любом заданном направлении. Подумайте, например, о разработке тормозов для автомобиля или двигателя ракеты. Почему может быть полезно разделить ускорение на компоненты?
Теоретическое обсуждение с описательной проработкой
Мы можем найти тангенциальное ускорение, используя правило цепочки, чтобы переписать вектор скорости следующим образом:
\ [\ mathbf {v} = \ dfrac {\ mathrm {d \ textbf {r}}} {\ mathrm {d} t} = \ dfrac {\ mathrm {d \ textbf {r}}} {\ mathrm { d} s} \ dfrac {\ mathrm {d \ textit {s}}} {\ mathrm {d} t} = \ textbf {T} \ dfrac {\ mathrm {d \ mathit {s}}} {\ mathrm { d} t} \]
Теперь, поскольку ускорение — это просто производная скорости, мы находим, что:
\ [\ begin {align} \ mathbf {a} & = \ dfrac {\ mathrm {d \ mathbf {v}}} {\ mathrm {d} t} \\ & = \ dfrac {\ mathrm {d}} {\ mathrm {d} t} (\ mathbf {T} \ dfrac {\ mathrm {d \ mathit {s}}} {\ mathrm {d} t}) \\ & = \ dfrac {\ mathrm {d} ^ 2 \ mathit {s}} {\ mathrm {d} t ^ 2} \ mathbf {T} + \ dfrac {\ mathrm {d} s} {\ mathrm {d} t} \ dfrac {\ mathrm {d} \ mathbf {T}} {\ mathrm {d} t} \\ & = \ dfrac {\ mathrm {d} ^ 2s} {\ mathrm {d} t ^ 2} \ mathbf {T} + \ dfrac {\ mathrm { d} s} {\ mathrm {d} t} \ left (\ dfrac {\ mathrm {d} \ mathbf {T}} {\ mathrm {d} s} \ dfrac {\ mathrm {d} s} {\ mathrm {d} t} \ right) \\ & = \ dfrac {\ mathrm {d} ^ 2s} {\ mathrm {d} t ^ 2} \ mathbf {T} + \ dfrac {\ mathrm {d} s} { \ mathrm {d} t} \ left (\ kappa \ mathbf {N} \ dfrac {\ mathrm {d} s} {\ mathrm {d} t} \ right) \\ & = \ dfrac {\ mathrm {d} ^ 2s} {\ mathrm {d} t ^ 2} \ mathbf {T} + \ kappa \ left (\ dfrac {\ mathrm {d} s} {\ mathrm {d} t} \ right) ^ 2 \ mathbf { N} \ end {align} \]
Примечание
\ [\ dfrac {\ mathrm {d} \ mathbf {T}} {\ mathrm {d} s} = \ kappa \ mathbf {N} \]
Это, в свою очередь, дает нам определение ускорения по компонентам.2} \ label {Нормальный} \]
Мы можем связать это с обычным физическим принципом равномерного кругового движения. При равномерном циркуляционном движении, когда скорость не меняется, нет тангенциального ускорения, только нормальное ускорение, направленное к центру круга. Как вы думаете, почему это так? Подсказка: посмотрите во вводном разделе разницу между двумя компонентами ускорения.
Пример \ (\ PageIndex {1} \)
Не найдя T и N, пишем ускорение движения
\ [\ mathbf {r} (t) = (\ cos t + t \ sin t) \ hat {\ textbf {i}} + (\ sin tt \ cos t) \ hat {\ textbf {j}} \ ] для \ (t> 0 \).2} \\ & = \ sqrt {\ dfrac {20} {9}} \\ & = \ dfrac {2 \ sqrt {5}} {3} \ end {align} \]
\ [\ mathbf {a} (1) = \ dfrac {4} {3} \ mathbf {T} + \ dfrac {2 \ sqrt {5}} {3} \ mathbf {N} \]
Infogalactic: ядро планетарного знания
Детонация 500-тонного заряда взрывчатого вещества TNT во время операции Sailor Hat. Начальная ударная волна видна на поверхности воды, а над головой видно облако ударной конденсации.Детонация (от латинского detonare , что означает «греметь вниз») — это тип горения, включающий сверхзвуковой экзотермический фронт, ускоряющийся через среду, которая в конечном итоге приводит в движение фронт ударной волны, распространяющийся непосредственно перед ним.Детонации происходят как в обычных твердых, так и в жидких взрывчатых веществах, [1] , а также в реактивных газах. Скорость детонации в твердых и жидких взрывчатых веществах намного выше, чем в газообразных, что позволяет более детально наблюдать волновую систему (более высокое разрешение).
Необычайное разнообразие видов топлива может присутствовать в виде газов, капель тумана или взвесей пыли. Окислители включают галогены, озон, перекись водорода и оксиды азота. Газовые детонации часто связаны со смесью топлива и окислителя, состав которой несколько ниже обычных коэффициентов воспламеняемости.Чаще всего они возникают в замкнутых системах, но иногда и в больших облаках пара. Другие материалы, такие как ацетилен, озон и перекись водорода, могут взорваться в отсутствие кислорода; более полный список дан как у Стулла [2] , так и у Бретерика. [3]
Неттлтон подробно рассматривает процессы перехода от дефлаграции к детонации для газов. [4]
Теории
Простейшая теория предсказания поведения взрывов в газах известна как теория Чепмена-Жуге (CJ), разработанная на рубеже 20-го века.Эта теория, описываемая относительно простой системой алгебраических уравнений, моделирует детонацию как распространяющуюся ударную волну, сопровождающуюся экзотермическим выделением тепла. Такая теория ограничивает химию и процессы диффузионного переноса бесконечно тонкой зоной.
Более сложная теория была выдвинута во время Второй мировой войны независимо Зельдовичем, фон Нейманом и В. Дерингом. [5] [6] [7] Эта теория, теперь известная как теория ZND, допускает химические реакции с конечной скоростью и, таким образом, описывает детонацию как бесконечно тонкую ударную волну, за которой следует зона экзотермической химической реакции.В системе отсчета стационарного скачка уплотнения следующий поток является дозвуковым, так что зона акустической реакции следует сразу за передним фронтом, условие Чепмена-Жуге. [8] [9] Есть также некоторые свидетельства того, что зона реакции является полуметаллической в некоторых взрывчатых веществах. [10]
Обе теории описывают одномерные и стационарные волновые фронты. Однако в 1960-х годах эксперименты показали, что газофазные детонации чаще всего характеризовались нестационарными трехмерными структурами, которые можно предсказать только в усредненном смысле с помощью одномерных устойчивых теорий.Действительно, такие волны гасятся, поскольку их структура разрушается. [11] [12] Теория детонации Вуда-Кирквуда может исправить некоторые из этих ограничений. [13]
Экспериментальные исследования выявили некоторые условия, необходимые для распространения таких фронтов. В замкнутом пространстве диапазон составов смесей топлива и окислителя и саморазлагающихся веществ с инертными добавками немного ниже пределов воспламеняемости, а для сферически расширяющихся фронтов намного ниже их. [14] Было элегантно продемонстрировано влияние увеличения концентрации разбавителя на расширение отдельных ячеек детонации. [15] Аналогичным образом их размер увеличивается с падением начального давления. [16] Поскольку ширина ячеек должна соответствовать минимальному размеру защитной оболочки, любая волна, перегруженная инициатором, будет подавлена.
Математическое моделирование неуклонно продвигается к предсказанию сложных полей течения за реакциями, вызывающими удары. [17] [18] На сегодняшний день нет адекватного описания того, как структура формируется и поддерживается за неограниченными волнами.
Приложения
При использовании во взрывных устройствах основной причиной повреждения от детонации является сверхзвуковой фронт взрыва (мощная ударная волна) в окружающей области. Это существенное отличие от дефлаграций, при которых экзотермическая волна является дозвуковой, а максимальное давление составляет не более четверти [ цитата необходима ] .Поэтому детонация чаще всего используется для взрывчатых веществ и ускорения снарядов. Однако детонационные волны могут также использоваться для менее разрушительных целей, включая нанесение покрытий на поверхность [19] или очистку оборудования (например, удаление шлака [20] ) и даже взрывную сварку металлов, которые в противном случае не смогли бы предохранитель. Импульсные детонационные двигатели используют детонационную волну для авиационно-космической тяги. [21] Первый полет самолета с импульсным детонационным двигателем состоялся в аэрокосмическом порту Мохаве 31 января 2008 года. [22]
В двигателях и огнестрельном оружии
Непреднамеренная детонация при желании дефлаграции является проблемой для некоторых устройств. В двигателях внутреннего сгорания это называется детонацией, гудением или гудением двигателя, и это вызывает потерю мощности и чрезмерный нагрев определенных компонентов. В огнестрельном оружии это может вызвать катастрофический и потенциально смертельный отказ.
Этимология
Классическая латынь detonare означает «прекратить греметь», как в погоде.Современное значение развилось позже.
См. Также
Список литературы
- ↑ Фикетт; Дэвис (1979). Детонация . Univ. California Press. ISBN 978-0-486-41456-0 .
- ↑ Стулл (1977). Основы пожара и взрыва . Серия монографий. 10 . A.I.Chem.E. п. 73.
- ↑ Бретерик (1979). Справочник реактивных химических опасностей . Лондон: Баттервортс. ISBN 978-0-12-372563-9 .
- ↑ Нетлтон (1987). Газовые взрывы: их природа, эффекты и контроль . Лондон: Баттервортс. ISBN 978-0-412-27040-6 .
- ↑ Зельдович; Компанеец (1960). Теория детонации . Нью-Йорк: Academic Press. ASIN B000WB4XGE.
- ↑ фон Нейман. Отчет о проделанной работе по теории детонационных волн, Отчет ОСРД № 549 (Отчет).
- ↑ Доринг, В. (1943).»Убер ден Detonationsvorgang в Гасене». Annalen der Physik . 43 (6–7): 421. Бибкод: 1943AnP … 435..421D. DOI: 10.1002 / andp.19434350605.
- ↑ Чепмен, Дэвид Леонард (январь 1899 г.). «О скорости взрыва в газах». Философский журнал . Серия 5. Лондон: Тейлор и Фрэнсис. 47 (284): 90–104. DOI: 10.1080 / 147864491243. ISSN 1941-5982.LCCN sn86025845.
- ↑ Жуге, Жак Шарль Эмиль (1905). «Sur la пропагандистские химические реакции в газах» (PDF). Journal des Mathématiques Pures et Appliquées . 6. 1 : 347–425.
- ↑ Reed, Evan J .; Riad Manaa, M .; Жареный, Лоуренс Э .; Glaesemann, Kurt R .; Жоаннопулос, Дж. Д. (2007). «Переходный полуметаллический слой в детонирующем нитрометане». Природа Физика . 4 (1): 72–76. Bibcode: 2008NatPh … 4 … 72R. DOI: 10,1038 / нфиз806.
- ↑ Эдвардс, Д.Х., Томас, Г.О., и Нетлтон, М.А. (1979). «Дифракция плоской детонационной волны при резком изменении площади». Журнал механики жидкостей . 95 (1): 79–96. Bibcode: 1979JFM …. 95 … 79E. DOI: 10.1017 / S0022112075X. CS1 maint: несколько имен: список авторов (ссылка)
- ↑ Д. Х. Эдвардс; Г. О. Томас; М.А. Нетлтон (1981). А. К. Оппенгейм; Н. Мэнсон; Р.И. Солоухин; Дж. Р. Боуэн (ред.). «Дифракция плоской детонации в различных топливно-кислородных смесях при изменении площади». Прогресс в космонавтике и аэронавтике . 75 : 341. DOI: 10.2514 / 5.9781600865497.0341.0357. ISBN 978-0-8-46-0 . CS1 maint: несколько имен: список авторов (ссылка) CS1 maint: использует параметр редакторов (ссылка)
- ↑ Глеземанн, Курт Р.; Фрид, Лоуренс Э. (2007). «Улучшенная химическая кинетика детонации древесины-кирквуда». Счета теоретической химии . 120 (1–3): 37–43. DOI: 10.1007 / s00214-007-0303-9.
- ↑ Нетлтон, М. А. (1980). «Пределы детонации и воспламеняемости газов в замкнутых и неограниченных условиях». Противопожарная наука и техника . Общество предотвращения пожаров (Великобритания) (23): 29.ISSN 0305-7844.
- ↑ Munday, G., Ubbelohde, A.R., and Wood, I.F. (1968). «Колеблющаяся детонация в газах». Труды Королевского общества A . 306 (1485): 171–178. Bibcode: 1968RSPSA.306..171M. DOI: 10.1098 / rspa.1968.0143. CS1 maint: несколько имен: список авторов (ссылка)
- ↑ Бартель, Х.О. (1974). «Прогнозируемые интервалы при взрывах водород-кислород-аргон». Физика жидкостей . 17 (8): 1547–1553. Бибкод: 1974PhFl … 17.1547B. DOI: 10,1063 / 1,1694932.
- ↑ Оран; Борис (1987). Численное моделирование реактивных потоков . Издательство Elsevier.
- ↑ Шарп, Г.Дж. И Куирк Дж. Дж. (2008). «Нелинейная клеточная динамика идеализированной модели детонации: регулярные клетки». Теория горения и моделирование . 12 (1): 1–21. Bibcode: 2007CTM …. 12 …. 1S. DOI: 10.1080 / 13647830701335749. CS1 maint: несколько имен: список авторов (ссылка)
- ↑ Николаев Ю.А., Васильев А.А., Ульяницкий Б.Ю. (2003). «Газовая детонация и ее применение в технике и технологиях (обзор)». Горение, взрыв и ударные волны . 39 (4): 382–410. DOI: 10,1023 / А: 1024726619703. CS1 maint: несколько имен: список авторов (ссылка)
- ↑ Huque, Z., Ali, M.R., and Kommalapati, R. (2009). «Применение импульсной детонационной технологии для удаления котельного шлака». Технология переработки топлива . 90 (4): 558–569. DOI: 10.1016 / j.fuproc.2009.01.004. CS1 maint: несколько имен: список авторов (ссылка)
- ↑ Кайласанатх, К. (2000). «Обзор двигательных приложений детонационных волн». Журнал AIAA . 39 (9): 1698–1708. Bibcode: 2000AIAAJ..38.1698K. DOI: 10,2514 / 2,1156.
- ↑ Норрис, Г. (2008). «Импульсная мощность: демонстрация полета с импульсным детонационным двигателем знаменует веху в Мохаве». Авиационная неделя и космические технологии . 168 (7): 60.
Внешние ссылки
Найдите детонацию в Викисловаре, бесплатном словаре. |
Нормальное или центростремительное ускорение
В физике мы говорим, что тело имеет ускорение, когда происходит изменение вектора скорости, будь то по величине или направлению. В предыдущих разделах мы видели, что ускорение можно классифицировать в соответствии с эффектом, который оно производит на скорость, на тангенциальное ускорение (если оно изменяет величину вектора скорости) и на нормальное или центростремительное ускорение (если оно меняет свое направление. ).Это внутренние компоненты ускорения. В этом разделе мы более подробно изучим нормальное или центростремительное ускорение.
Нормальное или центростремительное ускорение
Нормальное или центростремительное ускорение измеряет изменений направления скорости во времени. Это дается выражением:
Где:
- a → n: нормальное или центростремительное ускорение тела
- v: Скорость тела в исследуемой точке
- ρ: радиус кривизны.В случае кругового движения он равен радиусу окружности
Нормальное ускорение может быть:
- = 0: при прямолинейном движении, при котором направление остается постоянным
- > 0: При криволинейном движении, при котором направление скорости изменяется
Обратите внимание, что любую траекторию, описываемую телом, можно рассматривать как комбинацию прямых и криволинейных траекторий. Криволинейные участки траектории также можно рассматривать как дуги окружности.Следующее изображение иллюстрирует эту концепцию
Внутренние компоненты ускорения
Тангенциальное ускорение (при →) | Нормальное ускорение (an →)
Как мы видим, центр кривизны в точке искривленной траектории совпадает с центром круга, который проходит через нее. Радиус этого круга — это радиус кривизны в этой точке.
Демонстрация нормального ускорения
Ранее мы видели, что мгновенное ускорение является производной скорости.
Eine Verbrennung des freigesetzten Wasserstoffs kann mit ihren erheblichen, schnellen […]Druckanstiegen die Rckhaltefhigkeit des Sicherheitsbehlters infrage stellen, […] insbesondere bei Umschlag in ei n e Detonation .grs.de | Благодаря значительному и быстрому увеличению давления сгорание […] Выпускводорода может ухудшить удерживающую способность защитной оболочки, в частности […] if tr an sitio n i nto детонация occ urs .grs.de |
Zu dieser Unterklasse gehren Stoffe, die massenexplosionsfhig, aber so undefindlich sind, dass die […]Wahrscheinlichkeit einer Zndung oder des bergangs […] eines Brandes в ei n e Детонация u n te r normalen Bedingungen […]sehr gering ist. osce.org | В эту категорию входят вещества, которые обладают опасностью массового взрыва, но обладают такой нечувствительностью […], что вероятность инициирования или перехода с очень мала. […] burnin g to de ton ati on under no rma l c ondit io ns.osce.org |
Детонация : C he mische Umsetzung […] in einem explosionsfhigen System mit einer Stowelle, die sich mit hoher Geschwindigkeit […](einige km / s bis berschallgeschwindigkeit) ausbreitet. umweltnet.at | Детонация: Ch emi cal reac ti внутри […] взрывная система с ударной волной, бегущей с очень высокой скоростью (несколько километров […]в секунду до сверхзвуковой скорости). umweltnet.at |
86.1.1 jegl ic h e Детонация j e gl icher Kriegswaffe, […] атомарное или ядерное оружие Strahlung freisetzt, eine nukleare Reaktion […]erzeugt oder nuklear angetrieben ist (Nuklearwaffe) tis-gdv.de | 8 6. 1.1 и y детонация o f любое оружие на войны […] , который испускает атомное или ядерное излучение, вызывает ядерную реакцию, или […]работает на ядерной энергии (ядерное оружие) тис-гдв.de |
Der bergang erfolgt in Einem Rumlich Sehr Bereich, in dem die […]Geschwindigkeit der Verbrennungsfront nicht konstant ist und der Explosionsdruck bedeutend hher ist […] als bei der stab il e n Детонация .protego.de | Переход происходит в пространственно ограниченной области, в которой скорость […]волна горения непостоянна и давление взрыва значительно […] выше, чем i n a stab le детонация .protego.de |
Nach der Entsicherung und dem Ablauf […]des Zndverzugs erfolgt die Anregung der […] Knallkapsel, die d i e Детонация d e s Взрывы материалов […]des Granats initiiert. belma.com.pl | После взведения гранаты и истечения выдержки времени детонатор составляет […] срабатывает до init iat e detonation o f t he gr en ade explosive.belma.com.pl |
Nach Artikel 2 des bereinkommens zur Bekmpfung террористический Bombenanschlge begeht eine Straftat, wer […] […] widerrechtlich унд vorstzlich сделайте Sprengvorrichtung Одер Andere tdliche Vorrichtung Einen ffentlichen Орт, сделайте Staatliche Одер ffentliche Einrichtung, Ein ffentliches Verkehrssystem Одер сделайте Infrastruktureinrichtung verbringt, Дорт anbringt Одер Дорт Одер Gegen Diese цур Entladung Одер г у г Детонация b r in gt, mit dem Vorsatz, Tod oder schwere Krperverletzungen zu verursachen, oder mit dem Vorsatz, weit reichende Zerstrungen an einem solchen Orchen, einurs solchen System, einurs solchen diese Zerstrungen zu betrchtlichen wirtschaftlichen Verlusten fhren […]oder zu fhren geeignet sind. eur-lex.europa.eu | Статья 2 Конвенции о борьбе с бомбовым терроризмом предусматривает, что любое лицо совершает преступление, если это лицо незаконно и намеренно доставляет, размещает, сбрасывает или взрывает взрывное или другое смертоносное устройство в, в или против места общественного пользования, государства. или государственное учреждение, система общественного транспорта или объект инфраструктуры с намерением причинить смерть или серьезные телесные повреждения; или с намерением вызвать обширное разрушение такого места, объекта или системы, когда такое разрушение приводит или может привести к крупным экономическим потерям. eur-lex.europa.eu |
Eine Verbrennung des im Verlauf von Schweren Strfllen freigesetzten Wasserstoffs kann mit ihren erheblichen, schnellen […]Druckanstiegen die Rckhaltefhigkeit des Sicherheitsbehlters infrage stellen, insbesondere […] bei Umschlag in ei n e Detonation .grs.de | Сгорание водорода, выделяющегося во время серьезных аварий и связанных с ними чрезвычайно быстрых […]повышения давления могут поставить под сомнение удерживающую способность защитной оболочки, особенно […] if th is resu lts i n detonation .grs.de |
Fragmentierung ist eine natrliche […] unter der Wirkung d e r Детонация P r od ukte, die Shell-Erweiterung, […]Bruch gebrochen ist von […]solcher Sprengkpfe hergestellt ist, nicht nur als Container-Shell zu einem anderen Anti-Elemente bilden, Fragmente der Gre des unebenen, unregelmigen Form in der Luft schnell aus Zerfall in Fluggeschwindigkeit, таким образом эффективный и эффективный Anti-Elemente Bilden. china-tungsten.biz | Фрагментация естественная […] под th e ac tion o f детонация p ro канал s, t he оболочка […]расширение, трещина сломана из такого […] Боеголовкахарактеризуется не только как контейнер-снаряд для формирования других противоэлементов, осколки размером с неровную, неправильную форму в воздухе быстро затухают в скорости полета, так что эффективная противопехотная граната ограничена в области применения. china-tungsten.biz |
Die gewal ti g e Детонация e r ei gnete sich […] am Sonntag, dem 7. февраля 2010, um 11.17 Uhr Ortszeit nahe der Stadt Middletown im Osten der USA. munichre.com | T h e mas siv e blast o ccu rred в воскресенье, […] 7 февраля 2010 г., 11.17 по местному времени, недалеко от Мидлтауна на востоке США. munichre.com |
Neben der starken Panzerung sorgt die quasi frei schwebende Aufhngung der Sitze dafr, dass b e i Detonation e 9014cha Verleton i mine , так Питер Хельмейстер, шляпа der den Puma mageblich mitentwickelt. rheinmetall.org | Помимо прочной брони, виртуальная «свободно плавающая» подвеска сидений гарантирует защиту экипажа от серьезных травм в случае взрыва мины », — говорит Питер Хельмейстер, сыгравший важную роль в разработке Puma. rheinmetall.org |
Um d i e Detonation e i ne r entwendeten Kernwaffe zu verhindern […] und auch sonstigen unautorisierten Gebrauch auszuschlieen, […]haben die USA (und wohl auch andere Atomwaffenmchte) sogenannte Permissive Action Links (PAL) in diese Waffen eingebaut. swp-berlin.org | Для заказа t или до ven t t он детонация st ole n nuc le ar […] и исключить любое другое несанкционированное использование, США (и, вероятно, […]других ядерных держав) установили ссылки разрешающего действия (PAL) на свое ядерное оружие. swp-berlin.org |
Fragmentierung Sprengkopf ist eine der wichtigsten Arten von Sprengkpfen, vor allm durch die Rolle der hochenergetischen Sprengstoff, die Bildung einer groen Anzahl von High-Speed-Fragmente, mit hoher […]Geschwindigkeit treffen die Fragmente, die […] Rolle der Zndung u n d Детонация S c ha den Ziele, und […]kann fr Anti-effectives (Mensch, Tier), […]keine Rstung oder leicht gepanzerte Fahrzeuge, Flugzeuge, Radar und Raketen und andere Waffen und Ausrstung verwendet werden. china-tungsten.biz | Осколочная боевая часть является одним из основных типов боевых частей, в основном по роли высокоэнергетического взрывчатого вещества, с образованием большого количества быстроходных осколков, с использованием […]скоростных поражающих осколков, […] роль i gnit ion an d детонация d am возраст targ et s, и […]можно использовать для противодействия (человек, […]животных), без брони или легкой бронетехники, самолетов, радаров и ракет и другого вооружения и оборудования. china-tungsten.biz |
D i e Детонация e i ne r Bombe whrend […] der Bauarbeiten fr die neue Waldschlsschenbrcke wre eine Katastrophe. leica-geosystems.com | T he детонация из a b omb du кольцо […] Строительство нового моста Вальдшлсшен было бы катастрофой. leica-geosystems.com |
Wir Begaben uns dann in die hchsten Stockwerke des Treppenhauses, um aus der Hhe die Schlachtfelder zu beobachten, die Panzer, die die umliegenden Rasenflchen zerfurchten, Sprengwagen, die die Menge auseinander trieben und sichengen de roten, 000 […] traktierten, Leuchtpetarden, die […] ein Feuerwerk vortuschten, Maschinengewehrsal ve n , Detonationen v o n Granatwerfernr de la grauen …в die Wohnungen hinein- […]und Trnen aus den Augen hinausdrckte, die sich durch die Grnanlagen nachjagenden Vertreter der motorisierten Einheiten der Volkspolizei, die mit langen, weien Stcken alle Opponenten der damaligen Regierung misshandelten. buero-kopernikus.org | Затем мы переместились на верхние этажи нашей лестницы и наблюдали за полем боя с этой выгодной точки: танки, которые вспахивали окрестные участки травы; бронемашины, которые разогнали толпу и обрызгали ее […]красная жидкость, которая была […] твердый w золы из cl других; светящиеся дымовые шашки, похожие на салют, пулеметные залпы, удары […]гранатомета; […]серый туман со слезоточивым газом, который втиснулся в квартиры и выдавил слезы из наших глаз; моторизованные полицейские подразделения, гоняющиеся по паркам и садам, оскорбляя своими длинными белыми тростью всех, кто выступал против нынешнего правительства. buero-kopernikus.org |
Verfahren zum Unterbrechen einer […] Sprengschnur (8) fr den Fall, da eine ungewns ch t e Detonation d u rc h die Sprengschnur 14, es e r Детонация a n e iner defonierten Detonationsstelle ein bewegliches rushmanisches Trennelement (11) auslicheiton 9014 9014 904 904 Детонация n o ch nicht erfaten Abschnitt (8c) der Sprengschnur (8) an einer Schnittstelle abtrennt, so da dieser Abschnitt von144 e n i ch t mehr erreicht werden kann, wobei die Lnge des Sprengschnurteils zwischen dieser Definierte n Detonationserfassungsstelle (3d) und dieser Schnittstelle so bemessen wird, da d i e Detonation d i esnit…]Wenn Das Mechanische Trennelement […](11) den Abschnitt (8c) der Sprengschnur (8) abgetrennt hat. v3.espacenet.com | Способ прерывания и подрыва шнура (8) в […] case o f an un wan ted detonation run nin g th ou gh детонирующий шнур (8), в результате чего эти люди работают 90ed детонация триггер ge rs на de штраф детонация точка a подвижный механический элемент (11), который надежно разделяет секцию (8c) e детонация c or (8) еще не осторожно gh t на детонация, так что t он, упомянутый таким образом, отделенная секция (8c) больше не может быть достигнута детонация, при этом длина участка (8b) детонирующего шнура между определенными детонациями po int поймано th e детонация a -я точка прерывания i измеряется таким образом, чтобы детонация была запущена ro ugh the det on ation co rd cou ld not ha 9014 EA обналичил […]упомянул пункт […]прерывание, когда механический разделительный элемент (11) отделил секцию (8c) детонирующего шнура (8). v3.espacenet.com |
Es sind Tests durchzufhren, um sicherzustellen, dass Start-, Leerlauf-, Beschleunigungs-, Schwingungs-, berdreh- und andere Charakteristika zufrieden stellend sind, und um […]adquate Sicherheitsmargen fr das […] Nichtauftreten v o n Detonationen , L ei stungsstrungen […]oder anderen abtrglichen Bedingungen […]nachzuweisen, die der jeweiligen Motorbauart zuzuordnen sind. eur-lex.europa.eu | Испытания должны быть проведены, чтобы убедиться, что пуск, холостой ход, ускорение, вибрация, превышение скорости и другие характеристики соответствуют . […]удовлетворительно и демонстрирует адекватное […] поля f reedo m f ro m детонация, su rge , или от ее вредные […]подходящих условий […]к двигателю определенного типа. eur-lex.europa.eu |
Der Ort selbst, aber vor allem seine Tonspur — […]bestehend aus Meeresrauschen, Vogelgezwitscher […] und den ti ef e n Detonationen d e r Flugabwehrraketen […]— hat sich in meiner Erinnerung festgesetzt. dertagdesspatzen.de | Само место, но особенно его звуковой ландшафт — из них […]звуков моря, щебетания птиц и звуков […] зенитный M IS Silence s взрывы — rem ai n отпечатанные […]на моей памяти. dertagdesspatzen.de |
Die Schutzsysteme mssen so konzipiert sein und sich so anordnen lassen, da Explosionsbertragungen durch gefhrliche […]Kettenreaktionen und Flammstrahlzndungen sowie bergnge von Anlaufenden […] Explosione n i n Detonationen v e rh indert werden.thuba.com | Защитные системы должны быть спроектированы и способны размещаться таким образом, чтобы взрывы были […]предотвращено распространение в результате опасных цепных реакций или пробоя и […] начальные взрывы d o нет t be co me детонации .thuba.com |
Dazwischen die Bewegungen der in die Maquiladora strmenden Frauenmassen, die morgendlichen Busfahrten dorthin, die Autos und Reiter in der Wste, das Ausgraben der toten […]Leiber, die flimmernden Bilder im […] Fernsehen, die virtue ll e n Detonationen v o n Minenfeldern, die […]Fahrt entlang der 5000 Meilen langen […]Grenze, das treibende Schlauchboot, die Lauftexte, die von Hand Wsche waschende Frau, das die Strasse hinuntergehende kleine Mdchen: Sie ist immer noch ein kleines Mdchen. mediaartnet.org | В промежутках мы видим поток женских масс, устремляющихся в макиладору, утренние поездки на автобусе, машины и всадников в пустыне, эксгумацию . […]трупа, мерцающие […] телевизионные изображения es , th e vi rt ual детонации mi ne f ield s, the ride […]вдоль 5000-мильной границы, […]дрейфующая надувная лодка, подписи, женщина, стирающая белье вручную, маленькая девочка, идущая по улице: Она еще девочка. mediaartnet.org |
Wenn irgendeine Боеприпасы в логове […]Hhlen explodiert oder sich selbst entzndet, knnte es zu einem Dominoeffekt […] und zu weit er e n Detonationen k o mm en «, warnt er.osce.org | Если какой-либо из боеприпасов внутри пещер взорвется и самовозгорится, в нем может появиться домино […] воздействуют на d свинец на mo повторные детонации, « he war ned .osce.org |
Motoren mit der konventionellen S&S «Nosecone Zndung (im Nockenwellendeckel) besitzen eine 2 jhrige Garantie, Motoren mit S&S» IST Zndung sogar […]volle 3 Jahre da diese Zndung mit […] seinem Klopfse ns o r Detonationen o d er «Klingeln» verhindert […]und eine berlastung whrend der Einfahrphase verhindert. zodiac.nl | На двигатели с зажиганием S&S с носовым конусом предоставляется полная 2-летняя гарантия, на двигатели с зажиганием S&S IST будет предоставлен дополнительный год (всего 3 года) гарантии, потому что мы так уверены. […], что это зажигание предотвратит повреждение двигателя […] из-за kn ock или deto nat ion or ove r r evvin g во время […]период обкатки. zodiac.nl |
Hinweis: Bei Explosionen von Gasen, Dmpfen und Nebeln im Gemisch mit Luft sind wegen der […]unter Umstnden sehr hohen […] Ausbreitungsgeschwindigkei te n ( Detonationen ) a kt ive Absperr- oder […]Lschsysteme oft zu langsam, so […]dass hier passive Systeme wie Flammendurchschlagsicherungen (z. B. Bandsicherungen oder Tauchungen) bevorzugt werden. dekra-exam.eu | Примечание: Поскольку скорости распространения при взрыве смесей с воздухом […]баллонов газов, паров или тумана […] иногда b e ver y h igh (детонации), ac tiv e iso la или […]систем пожаротушения часто бывает […]слишком медленно, и предпочтение отдается пассивным системам, таким как пламегасители (например, гофрированная лента или гидрозатворы). en.dekra-exam.eu |
Денн эсэрфолген монахиня в айнцельнене […] Gebieten auf der Er d e Detonationen v o n grtem Ausma, […]die den Menschen jede Denkfhigkeit […]nehmen, denen sich dann ein Wten der Naturelemente anschliet, dessen Folgen unvorstellbar sind und erst nachher von den berlebenden bersehen werden knnen. duddeglobal.com | Beca us e now fo llo w детонации o f g rea test ex палатка в […] отдельных регионов земли, лишающих людей всех способностей […]на размышление, за которыми следует свирепая стихия природы, результаты которой невообразимы, и лишь впоследствии выжившие смогут уловить их. duddeglobal.com |
Die Detonationsrohrsicherung der Fa. Flammer 1002-0008 ist zur […]Verhinderung eines […] Flammendurchschlages bei stab il e n Detonationen u n d Deflagrationen von […]zndfhigen Gasbzw. Дампф / Люфт-Гемишен […]der Explosionsgruppe IIA, Normspaltweite> 0,90 мм bei atmosphrischen Bedingungen. awite.de | Пламегаситель детонационный 1002-0008 по […]Flammer GmbH предотвращает передачу […] of fl am es in st abl e detonations a nd def lagra ti ons of […]легковоспламеняющийся газ или смеси пар / воздух […]группы взрывоопасности IIA, стандартный зазор матрицы> 0,90 мм при атмосферных условиях. awite.de |
Eines der wesentlichsten Bauteile flammendurchschlagsicherer Матрица для арматуры Flammensperre, ein Element Welches die […]Fortpflanzung der Flammen von […] Explosionen (Deflagratio ne n ) Detonationen o d er Dauerbrand und somit […]Flammendurchschlge verhindert. flammensicherungen.com | Одним из наиболее важных компонентов пламегасителя является пламегаситель, который предотвращает возникновение пламени . […]распространение пламени, вызванное […] взрывы ( de flagr ati ons ), детонации или co nti nuous c горение […]и возникшее в результате ретроспективное воспроизведение пламени. flammensicherungen.com |
Jngste Innovation ist ein […] Edelstahlgewebe d a s Detonationen s t an dhlt.gkd.de | Последняя инновация — нержавеющая сталь . […] сетка, которая c на sta и u p на детонацию .gkd.eu |
Feste, flssige oder gasfrmige Stoffe […] […] oder Stoffgemische, die erforderlich sind, um beihrer Verwendung als Primrladungen, Verstrker- oder Hauptladungen in Gefechtskpfen, Geschossen und anderen Einsatza rt e eizufhren.eur-lex.europa.eu | Твердые, жидкие или газообразные вещества или смеси веществ, которые при их применении в качестве основных, разгонных или основных зарядов в боеголовках, подрывных и других устройствах должны взорваться. eur-lex.europa.eu |
Настройка Marlin | Прошивка Marlin
- О Marlin
- Скачать
- Настроить
- Установить Инструменты
- Bitmap Converter
- Калибровочный шаблон K-фактора
- Bugtracker
- Справка об ошибках 34 9023 9023 9023 Справка по исходному коду
920- Конфигурация
- Все документы
- Конфигурация Marlin
- Конфигурация лазера / шпинделя
- Конфигурация зонда
- Разработка
- Все документы
- Платы
- Стандарты кодирования Pull с кодом Gull
- Кодирование GD Скрипты
- Участие в Marlin
- Запросы функций
- Добавление новых шрифтов
- Языковая система ЖКД
- Функции
- Все документы 92 017
- Автоматическое выравнивание станины
- Унифицированное выравнивание станины
- Автозапуск
- EEPROM
- Отключение микропрограммы
- Linear Advance
- Код компенсации температуры датчика
- Дерево меню ЖК-дисплея
Дерево меню ЖК-дисплея - G0-G1 : линейное перемещение
- G2-G3 : перемещение по дуге или окружности
- G4 : задержка
- G5 : кубический шлиц Безье
- G6 : прямое шаговое перемещение G10 : втягивание
- G11 : восстановление
- G12 : очистка сопла
- G17-G19 : плоскость рабочего пространства ЧПУ
- G20 : дюймы
- G21 : миллиметровые единицы G26 : шаблон проверки сетки
- G27 : закрепить инструментальную головку
- G28 : Auto Home
- G29 : Выравнивание станины
- G29 : Выравнивание станины (3 точки)
- G29 : выравнивание станины (линейное)
- G29 : выравнивание станины (ручное)
- G29 : выравнивание станины (билинейное)
- G29 : выравнивание станины (унифицированное)
- G30 : одиночный Z-зонд
- G31 : салазки стыковки
- G32 : салазки для отстыковки G33 : Delta Auto Calibration
- G34 : Z Steppers Auto-Alignment
- G35 : Tramming Assistant
- G38.2-G38.5 : цель датчика
- G42 : перейти к координатам сетки
- G53 : переместить в координаты станка
- G54-G59.3 : система координат рабочего пространства
- G60 : сохранить текущее Положение
- G61 : возврат в сохраненное положение
- G76 : калибровка температуры датчика
- G80 : отмена режима текущего движения
- G90 : абсолютное позиционирование
- G91 : относительное позиционирование
- 2
- G : Установить позицию
- G425 : Калибровка люфта
- G800-M800 : Отладка анализатора Gcode
- M0-M1 : Безусловный останов
- M3 : Шпиндель CW / Laser On
- M Шпиндель против часовой стрелки / лазер включен
- M5 : шпиндель / лазер выключен
- M7-M9 : регуляторы охлаждающей жидкости
- 9 0079 M16 : Ожидается проверка принтера
- M17 : Включить шаговые двигатели
- M18, M84 : Отключить шаговые двигатели
- M20 : Список SD-карт
- M21 : Исходная SD-карта
- M22 : Отпустить SD-карта
- M23 : выбор файла SD
- M24 : запуск или возобновление печати SD
- M25 : приостановка печати SD
- M26 : установка положения SD
- M27 : отчет о состоянии печати SD
- M28 : Начать запись SD
- M29 : Остановить запись SD
- M30 : Удалить файл SD
- M31 : Время печати
- M32 : Выбрать и запустить
- M33 : Получить длинный путь
- M34 : Сортировка SDCard
- M42 : Установить состояние вывода
- M43 : Отладочные выводы
- M43 T : Тумблеры
- M48 : проверка точности датчика
- M73 : установка хода печати
- M75 : запуск таймера задания печати
- M76 : пауза печати задания
- M77 : остановка таймера задания печати
- M78 : Статистика задания на печать
- M80 : Включение питания
- M81 : Выключение питания
- M82 : E Абсолютное
- M83 : E Относительное
- M85 : Отключение при бездействии
- M92 : установка шагов оси на единицу
- M100 : свободная память
- M104 : установка температуры Hotend
- M105 : отчет о температурах