Как повысить плотность аккумулятора! | Статьи компании ООО «KRONVUZ» г Москва
Аккумуляторная батарея автомобиля требует к себе постоянного внимания. Ведь часто случается так, что невозможно запустить стартер после длительного простоя. Особенно, когда длительная зарядка не помогает и батарея разряжается крайне быстро. А это значит, что пришло время повысить плотность аккумулятора.
Правила безопасности при работе с электролитом
Перед тем как преступать к данной операции, необходимо запомнить следующие правила безопасности:
- Необходимо добавлять кислоту в воду, а не наоборот, поскольку эти жидкости имеют разную плотность.
- АКБ нельзя переворачивать вверх дном. В этом случае произойдет осыпание пластин и соответственно, к поломке устройства.
- Ни в коем случае нельзя доливать концентрированную кислоту в электролит.
Первое, что необходимо сделать, это проверить плотность уже заряженного АКБ.
Затем при помощи резиновой груши необходимо аккуратно выкачать старый электролит из банки и залить свежий раствор плотностью 1,39 – 1,40 г/куб. см. Периодически измеряйте плотность и стремитесь к одинаковым значениям во всех банках АКБ.
Для перемешивания электролита, аккумулятор нужно поставить на заряд при малом токе в течение получаса. После этого проведите финальный замер показаний. Такие манипуляции позволят значительно продлить срок эксплуатации данного изделия. Существует несколько способов как можно повысить плотность аккумулятора, рассмотрим способ в автоматическом режиме.
Рисунок 1. Система анализа состояния и мониторинга АКБ производства компании KRONVUZ
Автоматизация процесса проверки плотности аккумулятора
А что делать, если аккумуляторных батарей большое количество и требуется постоянный контроль над их параметрами, особенно, если это вопрос безопасности? Для этого нужна автоматизация, а именно
система анализа состояния и мониторинга АКБ.
Данное устройство позволяет обеспечить контроль температуры и напряжения на каждом элементе батареи. Соответственно, не только проводить циклы выравнивания, но и выявлять поврежденные элементы. Система автоматически отключит те элементы, которые уже заряжены во избежание их преждевременного разрушения. А это значит, что срок службы аккумуляторов может быть увеличен в несколько раз.
Таким образом, можно обслуживать большое количество АКБ и значительно продлить их период эксплуатации. А это уже действительно серьезная экономия. И разумеется, обеспечение бесперебойности рабочих процессов на производстве.
Вопрос-ответ
Сергей, 08.03.2017
Доброго времени.хотел узнать. Аккумулятор са/са если заряжать меньше чем 16,2 вольта,что случится? У меня зарядник выдаёт 14.8. СПС
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Сергей, благодарим Вас за обращение.
Критерием окончания заряда является достижение плотности электролита 1.27 г/см3 во всех банках, при невозможности контроля плотности, окончанием заряда можно считать падение зарядного тока до 0,5-1А и (либо) его стабилизация в течении 2-х часов.
Рекомендуем
производить заряд в соответствии с инструкцией по эксплуатации, с
выставлением зарядного тока в ручную с величиной 5% от ёмкости АКБ (в
Вашем случае 3А). При таком методе заряда ЗУ автоматически будет
повышать зарядное напряжение при падении тока (приём заряда), достигая
порога в 16В по окончанию заряда. В случае невозможности ЗУ повысить
значение напряжения до 16В, плотность не достигнет значения в 1.27
г/см3, соответственно степень заряженности не будет полной
Александр, 27.01.2017
Доброго времени суток! Приобрел АКБ АКОМ «ULTIMATUM» 60 Ач. А/м Лада Приора, эксплуатируется редко, выезжаю на небольшие расстояния 1-2 раза в неделю. Интересует следующий вопрос: Нужно ли заряжать новый АКБ, если да то, каким током в амперах и как долго по времени. Заранее спасибо за ответ.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Необходимость в заряде батареи заключается в её текущем состоянии, а именно в степени заряженности, которую можно определить несколькими способами. Самый простой способ это показания индикатора степени заряженности, который встроен в крышку аккумуляторной батареи, если цвет индикатора зелёный, значит степень заряженности достаточная для полноценной работы, если чёрный — батарею необходимо дозарядить.
Следующий способ требует наличия оборудования, такого как вольтметр и ареометр. При помощи вольтметра необходимо замерить НРЦ (напряжение разомкнутой цепи) на полюсных выводах АКБ без подключенной нагрузки.
Напряжение в 12,8-12,9В означает, что батарея заряжена на 100%, для Вашего удобства таблица степени заряженности находится во вложении к данному письму.

Рекомендации по заряду аккумуляторной батареи Вы можете найти в инструкции по эксплуатации или на официальном сайте нашей компании по адресу: http://www.akom.su/support/articles/calcium_battery/
Обратите внимание на то, что зарядное устройство должно быть способно выдавать напряжение в 16,2В.
Михаил, 23.12.2016
АКБ Аком EFB 60ач, плотность 12,3. ранее было ЗУ, которое не давало больше 14,2. Приобрел Вымпел-55, использую 1 алгоритм, ток 6а,
напряжение выставил 15,9, не смотря на то, что на сайте у Вас рекомендуется 16+. Со старта Напряжение уже практически на выставленном уровне, а снижаются амперы. Но вот только всё это дело немного побулькивает, и спустя несколько часов в таком режиме, электролит стал мутнее, цвет не поменял, просто мутнее, пластины плохо видно.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Мы не готовы комментировать работу зарядных устройств сторонних производителей без проведения предварительных испытаний. Рекомендуем к применению фирменное зарядное устройство «АКОМ»
Аккумуляторные батареи, изготовленные по технологии EFB (Enhanced Flooded Battery) — это улучшенные аккумуляторные батареи с жидким электролитом, специально разработанные для эксплуатации в условиях нагрузок, связанных с постоянно повторяющимися циклами заряда и разряда. За счёт применения целого ряда конструктивных изменений увеличивается срок службы АКБ и расширяется применяемость.
Исходя из того, что данная батарея конструктивно схожа с батареями изготовленными по технологии Ca/Ca (кальций-кальций), методики заряда данных батарей идентичны.
Обращаем особое внимание на то, что для эффективной и полной зарядки АКБ, изготовленных по технологии Ca/Cа, зарядное устройство должно обеспечивать зарядное напряжение 16,2В.
«Кипение» электролита (выделение пузырьков газа) — естественный процесс, возникающий в момент приближения напряжения к значению в 16В на клеммах батареи при заряде. Является признаком того, что степень заряженности АКБ приближается к максимальному значению. Критерием окончания заряда является достижение плотности электролита 1.27 г/см3 во всех банках, при невозможности контроля плотности, окончанием заряда можно считать падение зарядного тока до 0,5-1А и (либо) его стабилизация в течении 2-х часов.

Максим, 20.12.2016
Планирую приобретение аккумулятора для легкового а/м иностранного производства. На подсознательном уровне имею желание поддержать
отечественного производителя и соответственно приобрести ваш аккумулятор. Но непонятно одно, чем ваш аккумулятор лучше аккумуляторов иностранного производства, при том, что максимальная разница в цене на аналогичные модели всего 500 р., а на некоторые марки и вообще разницы в цене нет. Почему люди должны брать ваш аккумулятор по той же цене, что и импортный, если иностранные производители уже давно зарекомендовали себя хорошим качеством.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Интеграция в мировую автомобильную индустрию требует поддержания высокого уровня качества и конкурентоспособности продукции. На аккумуляторном производстве «АКОМ» эта задача решается путем постоянного развития производства, совершенствования конструкции и технологий, внедрения международных стандартов качества, системы LEAN Production.
Система менеджмента качества АО «АКОМ» сертифицирована на соответствие стандартам ISO 9001-2008, ISO TS 16949-2009. Отклонение по качеству невозможно, т.к. в технологический процесс изготовления аккумуляторных батарей включены посты контроля ключевых параметров, определяющих электрические характеристики батареи. Их уникальность — автоматическая отбраковка продукции, не соответствующей установленным техническим требованиям.
АКОМ — высокотехнологичное предприятие с уникальной многоступенчатой системой контроля качества выпускаемой продукции. Высокое качество продукции является фундаментальной основой нашего бизнеса. Каждый покупатель, приобретая аккумуляторную батарею нашего производства, получает гарантию от производителя и может рассчитывать на квалифицированное гарантийное и послегарантийное обслуживание, получая при этом уверенность в надёжной работе всех потребителей в автономном режиме, а также в гарантированном запуске двигателя автомобиля.
Исходя из того, что вся продукция АО «АКОМ» полностью соответствует заявленным характеристикам, обладает высоким качеством и уровнем сервиса, она априори не может быть дешевой.
Рекомендуем ознакомиться с презентационным фильмом о Группе Компаний АКОМ.
Ильназ, 18.11.2016
Подскажите, пожалуйста, по какой технологии (Ca/Ca и т.д.) изготовлен аккумулятор, устанавливаемый на автомобили LADA Vesta 2016 года? На моей есть лишь обозначения «6CT-62VL Евро», изготовлен 4 апреля 2016 года сменой «С».
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Согласно
нормативной документации, батарея 6СТ-62VL Евро по
конструкторско-технологическому исполнению относится к классу батарей
очень малым (VL) расходом воды, изготавливается по технологии Ca\Ca
(Кальций-Кальций), одним из преимуществ которой является сокращение
потери воды из электролита во время эксплуатации, что в свою очередь
значительно снижает объём обслуживания и повышает уровень безопасности.
Для удобства обслуживания (контроль уровня и плотности электролита),
батарея оснащена заливными отверстиями с пробками.
Алексей, 16.11.2016
Здравствуйте замечательная компания АКОМ! Скажите пожалуйста какие модели аккумуляторов являются обслуживаемыми а какие не обслуживаемые? Для меня это важно знать т.к. я их продаю. Не могу данной корректной информации найти в источнике. Заранее спасибо.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Согласно нормативной документации, батареи легковой группы с ёмкостью от 40Ач до 100Ач, произведённые на аккумуляторном производстве АО «АКОМ», по конструкторско-технологическому исполнению относятся к классу батарей очень малым (VL) расходом воды, изготавливаются по технологии Ca\Ca (Кальций-Кальций), оснащаются крышкой особой конструкции с лабиринтной системой газоотвода для сокращения потери воды из электролита во время эксплуатации, что в свою очередь значительно снижает объём обслуживания и повышает уровень безопасности. Для удобства обслуживания (контроль уровня и плотности электролита), все производственные линейки АКБ оснащены заливными отверстиями с пробками. Тяжелая группа батарей с ёмкостью от 140Ач до 225Ач по конструкторско-технологическому исполнению относятся к классу батарей малым (L) расходом воды и так же являются обслуживаемыми. Вышеперечисленные батареи относятся к свинцово-кислотным аккумуляторам с жидким электролитом, понятие обслуживания заключается в контроле расхода воды из электролита и при необходимости добавлении дистиллированной воды. Величина расхода воды зависит от применяемой технологии и особенностей конструкции. Любая батарея с жидким электролитом является обслуживаемой.
Так называемые
необслуживаемые батареи — это батареи не имеющие свободного электролита.
Электролит в таких батареях находится во связанном состоянии. Одной из
технологий производства таких батарей является технология GEL (Gelled
Electrolite) с гелеобразным электролитом. Так же на рынке представлены
батареи AGM (Absorptive Glass Mat ), в которых такой элемент
конструкции, как сепаратор изготовлен из стекловолокна. При
использовании такого материала нет нужды превращать электролит в гель,
весь электролит впитывается стекловолоконным сепаратором, и надежно в
нем удерживается. Обе технологии подразумевают наличие герметизированной
конструкции моноблока без доступа во внутрь. Необслуживаемые —
означает, что в АКБ этого вида не требуется следить за уровнем
электролита и доливать воду.
Евгений, 15.10.2016
Здравствуйте, у вас на сайте есть статья про зарядку кальциевого АКБ. там сказано что нужно 16В. У меня Лада Приора и стоит ваша батарея. Напряжение заряда в Приоре менее 16В. Получается она всегда недозаряжается?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Евгений, благодарим Вас за обращение.
Рекомендуем Вам заряжать аккумуляторную батарею на стационарном зарядном устройстве постоянным током 0,1 от её емкости до напряжения 14,4В, а когда значение тока упадет до 1-1,5 ампера продолжить зарядку таким током до достижения значений напряжения в 16,5В. Именно поэтому мы рекомендуем зарядное устройство, способное выдать напряжение 16,25-16,5В.
Маленький совет. Заряжать током 0,1С20 можно только при комнатной температуре и никогда не стремиться заряжать аккумулятор до 100%, т.к. такие заряды значительно изнашивают активные массы аккумуляторных пластин. После установки батареи на автомобиль степень заряженности фактически за один день упадет до 80%, это абсолютная норма.
Напряжение АКБ, установленной на автомобиль должно находиться в пределах 12,4-12,8В. Замерять не раньше 3-х часов после того, как двигатель будет заглушен.
Для того чтобы обеспечить нормальный заряд аккумуляторной батареи, изготовленной по технологии Са/Са, каковыми и являются наши АКБ, напряжение в бортовой цепи автомобиля зимой должно быть 14,5В, летом 14,2В. Если данное условие будет соблюдено, Вы не должны иметь проблем с исправной аккумуляторной батареей.
Очень важно в зимнее время ежедневно эксплуатировать автомобиль при времени одной поездки не менее 30 минут, этого достаточно для подогрева подкапотного пространства автомобиля и возвращения в АКБ израсходованного заряда на запуск двигателя и при стоянке. Разряд происходит за счет естественных токов утечки в бортовых системах автомобиля не отключаемых при вынутом ключе зажигания.
Надеемся на Ваше понимание вышеизложенного.
Желаем
удачи на дорогах!
Алексей, 24.09.2016
Доброго времени суток! У меня стоит АКБ 90 А/ч машина работает на ДТ специалисты замеряли пусковой ток и говорят, что он низкий, пробывал заряжал АКБ, плотность во всех банках 1,25 в связи с этим вопрос есть ли возможность поднять пусковой ток? За ранее спасибо с Уважением Алексей
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Алексей, благодарим Вас за обращение.
В соответствии с ГОСТ Р 53165-2008 «БАТАРЕИ АККУМУЛЯТОРНЫЕ СВИНЦОВЫЕ СТАРТЕРНЫЕ ДЛЯ АВТОТРАКТОРНОЙ ТЕХНИКИ»‘ и ТУ АКОМ 3481-001-57586209-2010 ток холодной прокрутки (Ix.n.) это ток разряда, указанный изготовителем, который может обеспечить батарея для пуска двигателя в заданных условиях. В соответствии с данными нормативными документами аккумуляторные батареи подвергаются испытанию на ток холодной прокрутки по строго определенной методике, обязательными условиями которой являются:
1) Проведение испытаний на батареях, с момента изготовления которых прошло не более 30 дней;
2) Предварительное испытание на номинальную или резервную емкость перед испытанием на ток холодной прокрутки;
3) Полный заряд аккумуляторной батареи после испытания на номинальную или резервную емкость в соответствии с методикой, определенной в этих же документах;
4) Проведение испытания на ток холодной прокрутки при температуре минус (18±1) °С;
5) Разряд аккумуляторной батареи при проведении данного испытания в две ступени: током Ix. n. на первой, и током 0.6 Iх.п. на второй ступени.
Также предусмотрено проведение трех циклов испытаний на номинальную или резервную емкость и ток холодной прокрутки. Результаты испытаний считаются положительными, если они достигнуты хотя бы на одном из трех циклов.
Любые иные методы
испытаний и проверок на ток холодной прокрутки аккумуляторных батарей
(в том числе на аккумуляторных батареях без предварительного заряда и с
помощью портативных тестеров, использующих расчетный метод для
определения величины тока холодной прокрутки) не соответствуют ГОСТ Р
53165-2008 и ТУ АКОМ 3481-001-57586209- 2010 и не могут являться
основанием для предъявления претензий заводу-изготовителю.
Алексей, 27.08.2016
Добрый день. Может ли «высохнуть» аккумулятор в летний период (до +35) с учетом эксплуатации в выходные (будни авто стоит на стоянке)?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Алексей, благодарим Вас за обращение.
Выкипание воды из электролита и, как следствие, снижение его уровня происходит под влиянием нескольких факторов, главными из которых являются применяемая технология изготовления АКБ, условия эксплуатации и температура.
В любом
случае, батарея, не находящаяся в эксплуатации, «выкипеть» не может.
Виктор, 23.07.2016
Добрый день, в марте 2016 купил Ниву Шевроле, стоит ваш штатный аккумулятор. При проверке: напряжение-12.50, плотность-1.21. Что делать?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Виктор, благодарим Вас за обращение.
В виду того, что аккумуляторная батарея была приобретена Вами в составе автомобиля, все гарантийные обязательства перед Вами несет производитель авто (ЗАО «Джи Эм-АВТОВАЗ») в лице своего дилера, у которого был приобретен автомобиль.
Рекомендуем Вам ознакомиться с условиями предоставления гарантии на АКБ в сервисной книге. Если Ваш автомобиль находится в гарантийном периоде — обратитесь к дилеру для проведения диагностики АКБ и автомобиля.
Претензии к АКБ не удовлетворяются в случае если плотность электролита ниже 1,2г/см3 во всех банках одновременно (не гарантийный случай).
Причина низкой
плотности — низкая степень заряженности, батарею необходимо зарядить.
Евгений Павлович, 30.06.2016
Здравствуйте. Аккумулятор «кальций-кальций» означает, что свинцовые пластины покрыты слоем кальция, или состоят из сплава вышеназванных металлов? А аргентум-кальций — это что, положительные пластины посеребрённые или….?? Что-то не понятно; ответе, пожалуйста, если знаете.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Евгений Павлович, благодарим Вас за обращение.
Технология Ca/Ca предусматривает изготовление электродов (положительных и отрицательных) из свинцового сплава, легированного кальцием для достижения определённых задач, а именно: снижение расхода воды, снижение времени саморазряда, увеличения электрических характеристик и пр.
Основная цель легирования электродов серебром это снижение влияния коррозии.
Сергей, 13.03.2016
Здравствуйте! Допускается ли использование аккумулятора Аком Reactor Са-Са 62 Ач в дежурном режиме, т.е. аккумулятор постоянно находится под напряжением 13.6В. Я использую такой режим в случае длительного простоя автомобиля а гараже, скажем 3..4 недели или вообще всю зиму. Какие есть рекомендации по этому поводу? Возможно ли использование Са-Са аккумулятора в источниках бесперебойного питания?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Сергей, благодарим Вас за обращение.
Хранить батарею под постоянным напряжением в 13,6В не имеет никакого смысла. Достаточно зарядить её до 100% степени заряженности и оставить на хранение, периодически (раз в 2 месяца) проверяя степень заряженности и заряжать при необходимости.
Для работы в ИБП стартерные аккумуляторные батареи не подходят,
т.к. их основная задача — кратковременная отдача высокой мощности, для
ИБП необходимы тяговые батареи, работа которых заключается в длительном
режиме разряда.
Михаил, 11.01.2016
Лада Калина Хэтчбек 1,6 8кл 2012г. штатный аккумулятор на 55а/ч. возможна ли замена на Akom Reactor 55а/ч 550а/ч. Какие еще возможны замены, без ущерба генератора.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Михаил, благодарим Вас за обращение.
Замена штатной АКБ 6СТ-55VL АКОМ Стандарт на батарею 6СТ-55VL REACTOR возможна без негативного влияния на штатное оборудование автомобиля. В случае, если Вы оснащали автомобиль дополнительным электрооборудованием, рекомендуем батарею 6СТ-65VL АКОМ, либо 6СТ-62VL REACTOR.
Нагрузка на генератор не зависит от повышения ёмкости АКБ, следите за
напряжением заряда, которое должно быть в диапазоне от 13,8В до 14,5В.
Антон, 28.12.2015
Добрый день у меня аккумулятор АКОМ REACTOR 750, морозы у нас бывают лютые. Сегодня аккумулятору исполнилось 2 года. За его состоянием следил диллер которому я доверя — и как оказалось зря. Так как они совсем не смотрели и не обслуживали его. Недавно при маленьком морозе у меня не завелся автомобиль. Замеры показали плотность 1.170-1.190 во всехбанках. После длительной зарядке (2 суток) напряжение дошло до 14.7 и сила тока опустилась до 0 ампер (изначально было 3 ампера) вобщем плотность поднялась до 1.220-1.240. Что мало для крайнего севера/ .
Вопроса два:
1) при каком напряжении заряжать аккумулятор (гдето читал что кальциевые нужно заряжать при 15-16)? или я заряжал правильно?
2) как поднять плотность аккумулятора правильно до 1. 27 -1.28
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Антон, благодарим Вас за обращение.
Вы совершенно правы, для полного заряда аккумуляторной батареи, изготовленной по технологии кальций-кальций, необходимо напряжение в 16,2В.
Заряд АКБ необходимо проводить при температуре электролита более 0ºС.
Перед началом зарядки необходимо выкрутить заливные пробки и оставить их в посадочных гнездах крышки. По окончанию заряда, прежде чем завернуть пробки, необходимо извлечь их из заливных отверстий для выхода скопившихся газов и выдержать в таком состоянии батарею не менее 20 минут. Во время заряда периодически проверяйте температуру электролита и следите за тем, чтобы она не поднималась выше 45ºС. Начинать заряд рекомендуется током не более 5% от номинальной емкости в течении двух часов, с последующим повышением тока зарядки до 10% от номинальной емкости. Для эффективной и полной зарядки АКБ зарядное устройство должно обеспечивать зарядное напряжение 16,0 В. Критерием окончания заряда является достижение плотности 1.27 г/см3, при невозможности контроля плотности, окончанием заряда можно считать падение зарядного тока до 0,5-1А и его стабилизация в течении 2-х часов.
При заряде выделяется взрывоопасный газ! Помещение, где ведется зарядка должно быть оборудовано приточно-вытяжной вентиляцией или проветриваться, в нем запрещается курить и пользоваться открытым пламенем!
Для проверки напряжения разомкнутой цепи АКБ после заряда
необходимо выключить зарядное устройство, отсоединить наконечники
проводов зарядного устройства от полюсных выводов АКБ, выдержать АКБ не
менее 8 часов при комнатной температуре и затем провести замер.
Булат, 19.12.2015
Добрый день.
На Ладе Приоре стоит штатный акк. АКОМ 55 VL, однако он стал плохо держать заряд (4 года эксплуатации), поэтому планирую поменять на новый и хочу приобрести АКОМ Браво 60 VL. Допускается ли подобная замена? Не будет ли новый аккумулятор ездить недозаряженным?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Булат, благодарим Вас за обращение.
В качестве замены штатной аккумуляторной батареи, рекомендуем Вам АКБ АКОМ 55Ач, либо 60Ач.
Но в случае, даже если Вы приобретёте АКБ BRAVO 60Ач, такого явления как недозаряд возникать не будет, при условии исправности системы заряда АКБ и отсутствии высоких токов утечки (свыше 30-50мА).
Константин, 25.11.2015
Добрый день,аккумулятор аком 65ач ca/ca.В первой и в посл. банке плотность электролита 1.25 и выше не поднимается!В остальных банках во 2,3,4,5 плотность 1.27!Заряжал током 1а и напряж 15в. 24часа. плотность в крайних банках не поднялась выше 1.25!Подскажите как выравнять плотность и поможет ли зарядка 16вольтовым оборудованием?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Константин, благодарим Вас за обращение.
Если батарея не подвергалась глубокому разряду, не перезаряжалась
или долго не эксплуатировалась в недозаряженном состоянии (о чем можно
судить по оплыванию активной массы и цвете электролита) и все банки
кипят при заряде, то все должно быть нормально. Если есть отличие в
уровне электролита, то в показаниях плотности может быть разница. Если
есть возможность, конечно необходимо применить ЗУ, которое способно
выдавать 16В. Для батарей, изготовленных по кальциевой технологии это
идеальный вариант. Продолжайте заряд с напряжением в 16В, плотность
должна выровняться.
Рамиль, 14.10.2015
Разрешается ли путем смешивания электролита в разных банках, выравнивать плотность в банках?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Рамиль, необходимо уточнить какой именно электролит Вы используете и в каких целях, нельзя заливать электролит при потере уровня из-за выкипания воды, в этом случае доливается только дистиллированная вода.
Также не рекомендуем использовать электролит сторонних производителей, т.к. его компоненты (присадки) отличаются.
Игорь, 20. 08.2015
Что за аккумулятор Аком ставят на конвейере на Ладу Ларгус?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Игорь, благодарим Вас за обращение.
Автомобили Ларгус оснащались АКБ 6СТ-70VL (70Ач, 720А, формат L3,
обратная полярность) в период с мая 2014г по январь 2015г. С января
2015г по сегодняшний день данный автомобиль оснащается батареей 6СТ-64VL
(64Ач, 620А, формат L2, обратная полярность). Продукция произведена на
аккумуляторном производстве ЗАО «АКОМ» (г.Жигулёвск).
Сергей, 14.06.2015
Какой завод выпускает аккумуляторы марки Аком?
Евгений Смолькин, менеджер по интернет-маркетингу
Здравствуйте, Сергей. Производством АКБ «Аком» занимается ЗАО «АКОМ» г. Жигулевск
Петр, 12.05.2015
Добрый день!
Купил авто вместе с Вашим АКБ в 2008 г.
и…. вот спустя сколько времени он только начал плохо держать заряд.
Желаю Вам процветания и так же держать МАРКУ.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Пётр, благодарим Вас за тёплые слова в наш адрес.
Залогом безотказной работы аккумуляторной батареи является грамотная эксплуатация.
Надеемся, что и в будущем Вы отдадите предпочтение продукции ЗАО «АКОМ».
АКБ. Правила зимнего хранения и эксплуатации
08.08.2016
Зимой некоторые автомобили эксплуатируются нечасто. Нужно ли перед долгой стоянкой скидывать клеммы и отключать массу? И каковы правила хранения АКБ зимой, если машина совсем не используется?
Снимать клеммы и отключать массу необходимо. На это есть свои причины. Прежде всего, в любом случае существует утечка в виде работы бортовых систем, например часов, питание идет и на бортовой компьютер. Все это постепенно опустошает вашу аккумуляторную батарею. Стандартная утечка бортовой цепи автомобиля, допустимая заводом-изготовителем по нормам, составляет 30 миллиампер (0,03 А). На первый взгляд, кажется, что это совсем немного. Но это только так кажется. Попробуйте пересчитать, за какое время такая утечка опустошит ваш аккумулятор. Возьмем, к примеру, стандартную батарею емкостью 55 А/ч. Это означает, что 55 ампер он, выдаст за час. Или 5,5 ампер за 10 часов. Половину ампера он отдаст уже за сто часов. Следовательно, 50 миллиампер уйдут за тысячу часов. Тысячу часов делим на 24 часа, получается, что полностью батарея сядет за 41 день, это если АКБ была 100% заряжена, если нет то еще быстрее. Но эксплуатация при 100% разряде совершенно недопустимо. Если аккумулятор разрядится на 25 % — это уже плохо, а если сядет на 50% — он замерзнет уже при «-27» градусах по Цельсию. Так что за 20 дней при стандартной утечке ваш аккумулятор превратится в кусок льда при стоянке на улице зимой, а про пуск автомобиля мы тут вообще не говорим. Чтобы избежать такого развития событий, нужно просто снять клемму. Это самый простой способ предотвратить утечку энергии и разрядку батареи при длительном промежутке времени «не езды» на машине. Для современных машин это, конечно, не очень хорошо. Могут сброситься настройки бортового компьютера, заблокироваться аудиосистема, потеряться настройки электронного ключа. Но ведь такие машины и не рассчитаны на такую редкую эксплуатацию. Впрочем, и здесь есть выход — периодически подзаряжать аккумулятор или как компромисс хотя бы запускать иногда машину на короткий промежуток времени.
Как же правильно хранить АКБ, если машина зимой на приколе, обслуживать аккумулятор и эксплуатировать его.
1. Хранение аккумулятора
Залитые батареи рекомендуется хранить в сухом помещении с температурой не ниже −30? и не выше 0?. Батареи устанавливаются на хранение полностью заряженными. Допускается хранить батареи и при положительных температурах, однако темп саморазряда аккумуляторов при этом будет в несколько раз выше. Ежемесячно необходимо проверять плотность электролита или измерять напряжение на клеммах аккумулятора. Степень разряда аккумулятора можно проверить по таблице № 1. При снижении плотности электролита более чем на 0,03 г/см3, т.е. до уровня 1,24 г/см3 или напряжения ниже «12,45» Вольт батарею следует подзарядить.
Перед продолжительной стоянкой автомобиля необходимо отсоединить АКБ от бортовой сети, полностью ее зарядить и хранить в прохладном помещении. Моноблок во избежание саморазряда по поверхности должен быть чистым. Если батарея должна быть постоянно готова к установке на автомашину, то при снижении плотности до уровня 1,24 г/см3, батарею следует подзарядить. Если от батареи не требуется постоянной готовности, то рекомендуется ее подзаряжать при снижении плотности до уровня 1,22 г/см3.
Зимой следует иметь в виду, что электролит в сильно разряженных батареях может замерзнуть при наступлении морозов. Зависимость температуры замерзания электролита от его плотности приведена в таблице № 2.
Не допускайте снижения плотности до критической, иначе при замерзании электролита возможно необратимое повреждение моноблока и пластин аккумулятора.
Таблица № 1. Степень разряженности аккумулятора.
Напряжение на клеммах, (В) | 12,66 | 12,45 | 12,24 | 12,06 | 11,80 и ниже |
Плотность электролита, г/см3 | 1,27 | 1,23 | 1,20 | 1,17 | 1,12 и ниже |
Степень заряда, % | 100 | 75 | 50 | 25 | 0 |
t замерзания электролита ? | -64 | -42 | -27 | -15 | -10 до 0 |
Таблица № 2. Температура замерзания электролита в зависимости от его плотности.
Плотность Эл-та | 1,0 | 1,05 | 1,10 | 1,15 | 1,20 | 1,25 | 1,27 | 1,30 | 1,35 |
t замерзания, ? | 0 | −3,.3 | −7,7 | −15 | −27 | −52 | −64 | −70 | −49 |
2. Контроль состояния батареи
Рекомендуется один раз в месяц проверять уровень электролита и при необходимости доливать только дистиллированную воду до нормального уровня. Пластины, не покрытые электролитом, высыхают и осыпаются, что приводит к преждевременному выходу АКБ из строя.
Запрещается доливать электролит или кислоту в АКБ.
Это можно делать только в том случае, если точно известно, что понижение уровня электролита произошло за счет его выплескивания.
Не используйте воду сомнительного происхождения.
Контролируйте степень заряженности аккумулятора по плотности электролита или по напряжению на клеммах ненагруженной батареи. Степень разряда батареи можно определить из Таблицы № 1, или посчитать по формуле:
Uнрц = 6*(0,84+Р), где
Uнрц (НРЦ) — напряжение разомкнутой цепи;
Р — Плотность электролита.
Следовательно, плотность можно посчитать соответственно по формуле: Р = Uнрц/ 6 — 0,84
100% заряженная батарея, т.е. с плотностью электролита 1,27 г/см3 будет иметь:
НРЦ = 6*(0,84+1,27) = 12,66 Вольта;
Р = 12,66 / 6 — 0,84 = 1,27 г/см3
Зная напряжение на клеммах аккумулятора, можно всегда посчитать плотность электролита в нем.
Категорически запрещается эксплуатировать батареи с уровнем заряда ниже 75% зимой и 50% летом.
Хранение и эксплуатация АКБ в разряженном состоянии приводит к необратимым процессам, при которых восстановление АКБ не возможно.
Низкая плотность электролита в АКБ говорит о её разряженности и для повышения плотности электролита необходимо заряжать АКБ, а не повышать её доливкой кислоты или электролита.
Просто долив кислоты или электролита, приведёт к изменению кислотного баланса и как следствие после полного заряда к превышению допустимого уровня плотности электролита. Превышение плотности электролита выше допустимой нормы приводит к разрушению пластин внутри АКБ.
3. Заряд аккумулятора
Заряд АКБ производится током равным 10% от её ёмкости (например при ёмкости 55 А/Ч ток зарядки не должен превышать 5,5 А). Нарушение данного требования приводит к разрушению пластин из-за перегрузок.
Старайтесь заряжать батарею малыми токами, при этом увеличивается степень и глубина заряда.
Окончанием процесса заряда аккумуляторов следует считать:
- равномерное кипение электролита во всех банках;
- равномерный нагрев корпуса батареи;
- напряжение на клеммах аккумулятора достигло значения 16,4 вольта;
- плотность электролита прекратила подниматься в батарее (если плотность растет, то это означает, что не все элементы еще прореагировали и батарея заряжается).
4. Контроль электрооборудования автомобиля
Необходимо качественно и регулярно проверять и обслуживать электрооборудование автомобиля. Отклонение параметров электрооборудования (генератора, стартера, различных реле) от установленных величин приводит к снижению надежности и к сокращению срока службы АКБ.
Нормы на параметры электрооборудования:
Пределы рабочего напряжения бортовой сети автомобиля не должны выходить за пределы 13,8-14,5 V, при различных режимах работы автомобиля.
Отклонение величины зарядного напряжения за пределы нормы на 0,3 — 0,5 V приводит к сокращению срока службы батареи в несколько раз.
Токи утечки не должны превышать 30 мА/ч (0,03 Ампера). Повышенный ток утечки уменьшает срок службы АКБ ввиду ускоренности циклов заряда-разряда батареи, и увеличивает вероятность глубокого разряда батареи.
Повышенное напряжение генератора приводит к осыпанию активной намазки пластин в батареях, что приводит к уменьшению емкости батареи и способствует замыканию пластин за счет осыпавшейся активной массы с положительных пластин.
Эксплуатация разряженной батареи приводит к осыпанию активной массы с отрицательных пластин. Признаком осыпания пластин является потемнение цвета электролита во всех банках (коричневый цвет — осыпание положительных пластин, серый цвет — осыпание отрицательных пластин).
Так же пониженное напряжение генератора (особенно зимой) не позволяет зарядить полноценно батарею, и происходит ее эксплуатация в полуразряженном состоянии. Это может привести к необратимой сульфатации пластин, что чревато уменьшением, как емкости батареи, так и величины стартового тока аккумулятора.
У недозаряженного аккумулятора плотность электролита понижена, что может привести к его замерзанию при сильных морозах и стоянке машины на улице (смотри таблицу № 2).
5. Эксплуатация аккумулятора
Пуск стартера производите короткими включениями, но не более чем на 10 сек. Перерыв между включениями летом не менее 15 сек., зимой не менее 1 мин. Избегайте включать стартер более 3-х раз подряд. Езда при помощи стартера не допускается.
Категорически запрещается «прикуривать» аккумулятор от нестандартных пускозарядных устройств во избежание взрыва моноблока, деформации пластин и внутренних тоководов, что приводит к осыпанию активной массы пластин и разрыву межэлектродных соединений.
При низких температурах происходит замедление всех химических процессов внутри АКБ, батарея переходит в «спящий режим» (электрические параметры АКБ при t ниже «-30» градусов по Цельсию понижаются в 2 раза.) Поэтому перед пуском двигателя на некоторое время необходимо включить электрические потребители (фары, габариты) для возобновления электрохимических процессов и только после этого делать попытки старта.
Для уменьшения рисков плохих пусков при эксплуатации автомобиля в зимнее время рекомендуется подбирать АКБ по ёмкости и стартовым характеристикам в соответствии с конкретной климатической зоной.
Подготовка аккумулятора к зиме: инструкция + видео
С наступлением холодов многие водители сталкиваются с проблемой, когда их аккумулятор оказывается разряжен и не в состоянии прокрутить стартер машины. Само собой, это доставляет неудобства, особенно если автомобиль отказывается заводиться в самый неподходящий момент. Подготовка аккумулятора к зиме позволит вам в будущем избежать таких неприятных моментов.
Обслуживание аккумулятора является важным этапом в подготовке машины к зиме. Дело в том, что зимой, когда холодному аккумулятору приходится запускать мотор с густым маслом, нагрузка на батарею увеличивается. А зарядка начинается лишь тогда, когда аккумулятор согрелся, и только на ходу (на холостых оборотах зарядки нет).
Подготовку аккумулятора к зиме выполняется в два этапа:
- Зарядка аккумулятора зарядным устройством и приведение плотности электролита в соответствие с нормой.
- Утепление аккумуляторной батареи (сокращенно – АКБ) в моторном отсеке при помощи специальных утеплительных материалов и приспособлений.
А в конце этой статьи вы сможете ознакомиться с видео-инструкцией о том, как подготовить аккумулятор к зиме.
Зарядка аккумулятора при его подготовке к зиме
Зарядка автомобильного аккумулятора является важным этапом при его подготовке к зиме. На нашем сайте уже есть подробное руководство на эту тему, поэтому в данной статье мы рассмотрим лишь основные моменты. Также совсем не лишним будет знать, как проверить аккумулятор автомобиля на работоспособность.
И так, после того, как вы снимите батарею с автомобиля её необходимо будет очистить от загрязнений, которые могут находиться на поверхности корпуса, и зачистить наждачной бумагой клеммы для улучшения контакта.
Прежде чем заряжать аккумулятор, нужно выкрутить пробки из банок (заливных отверстий), если предусмотрена такая возможность, и проверить уровень электролита в них. Электролит должен покрывать пластины на 10-15 мм. Если уровень недостаточный, то необходимо долить в каждую из банок дистиллированной воды.
Далее следует зарядить аккумулятор. Если для зарядки вы используете современное зарядное устройство для автомобильных аккумуляторов (сокращенно – ЗУ), то в этом ничего сложного нет. Нужно лишь придерживаться нескольких простых правил:
- Заливные горловины в аккумуляторе должны быть открыты (то есть пробки нужно оставить выкрученными).
- При подключении ЗУ к батарее соблюдайте полярность: красный провод соединяйте с плюсовой клеммой АКБ, а черный – с минусовой. Важно не перепутать полярность при подключении, так как не каждое зарядное устройство имеет против этого защиту, что может привести к выходу его из строя.
- После подключения зарядного устройства к аккумулятору можно включать его в сеть.
- Заряжать аккумулятор следует в хорошо проветриваемом помещении. Не смотря на то, что многие автоматические зарядные устройства не позволяют электролиту сильно кипеть в процессе зарядки, тем не менее, лучше заряжать АКБ в нежилом помещении. Например, в гараже, на теплой лоджии или, на худой конец, в коридоре.
- Примерное время зарядки автомобильного аккумулятора составляет 12-13 часов.
Верным признаком окончания процесса зарядки является выделение пузырьков газа из электролита.
Как поднять плотность электролита в аккумуляторе?
После отключения аккумулятора от зарядного устройства необходимо, чтобы батарея отстоялась не менее одного часа. Только после этого можно ареометром измерять плотность электролита в каждой банке (подробнее смотрите на видео ниже).
Нормальной плотность электролита считается в пределах 1,26-1,27 г/см3, но для того чтобы аккумулятор не замерз зимой она не должна быть ниже 1,18 г/см3. Если в какой-либо из банок АКБ плотность будет слишком низкой, её необходимо повысить, просто долив в неё электролит повышенной плотности (продается в автомагазинах).
Ну и в конце процедуры, дабы удостовериться, что аккумулятор хорошо подготовлен к зиме, нужно измерить напряжение на клеммах АКБ. Это можно сделать любым вольтметром или цифровым мультиметром, включенным в режим измерения постоянного напряжения. Для нормального запуска двигателя в период зимней эксплуатации автомобиля напряжение на клеммах аккумулятора должно быть не меньше 12,6 Вольт.
Утепление аккумулятора на зиму
При подготовке аккумулятора к зиме также очень важно уделить внимание его утеплению в моторном отсеке. Наибольшей популярностью в России пользуются два вида утеплителей:
- Пассивные «Термокейсы» и «Шубы» для аккумуляторов, сделанные из теплоизолирующих материалов и работающие по принципу термоса;
- Электрические нагреватели для автомобильных АКБ. Обычно такие нагревательные элементы размещаются внутри специального термокейса для аккумулятора и оснащаются терморегулятором и светодиодным индикатором уровня заряда батареи.
Основной задачей утеплителей для аккумуляторов является поддержание температуры АКБ на достаточном уровне для сохранения работоспособности батареи в условиях суровой зимы. Дело в том, что в мороз автомобильные аккумуляторы восстанавливаются дольше, нежели при теплой погоде, и при коротких поездках не успевают заряжаться полностью.
Это происходит по той причине, что в мороз батарея начинает заряжаться лишь после того, как в ней нагреется электролит. Поэтому теплый аккумулятор, укутанный в хороший утеплитель, успеет зарядиться даже за время короткой зимней поездки.
К дополнительным преимуществам фабричных зимних утеплителей для аккумуляторов можно отнести и тот момент, что они изготовлены из негорючих материалов устойчивых к агрессивным жидкостям. То есть, говоря простыми словами, эти утеплители не горят и не подвергаются разрушениям под воздействием бензина, масел и кислот.
Потому, во избежание несчастных случаев, советуем несколько раз подумать, стоит ли самостоятельно утеплять аккумулятор подручными материалами, или все же лучше купить для этого специальный утеплитель?
Видео-инструкция: как подготовить автомобильный аккумулятор к зиме
Как поднять плотность электролита в аккумуляторе?
Диагностика и ремонт10 октября 2020
В автомобильные свинцовые батареи залит водный раствор серной кислоты, удельный вес которого определяет степень заряда. В процессе эксплуатации параметр падает, что приводит к снижению емкости и проблемам с пуском двигателя при отрицательной температуре. Владелец автомобиля может поднять плотность электролита в аккумуляторе, но при деградации активной массы с образованием шлама восстановить исходную емкость батареи не получится.
Причины падения плотности электролита
Снижение удельного веса рабочей жидкости в кислотных АКБ происходит в случаях:
- Естественного разряда батареи (например при многократных попытках пуска силового агрегата с неисправными системами зажигания и подачи топлива). На части аккумуляторов предусмотрено смотровое окно с цветным поплавком, позволяющим определить степень зарядки по плотности. Следует учесть, что глазок обеспечивает замер только в 1 банке и не дает полноценной картины состояния источника постоянного тока.
- Доливки в ячейки батареи дистиллированной воды без проведения контрольных замеров удельного веса. В процессе эксплуатации часть электролита выкипает, владельцы восполняют недостаток добавлением воды в банки. В результате плотность раствора падает ниже допустимого порога, емкости аккумулятора не хватает для работы светотехнического оборудования или стартера под нагрузкой.
- Выкипания части электролита из-за перезаряда (например при поломке регулятора напряжения на генераторе) либо длительной эксплуатации батареи при повышенной температуре воздуха.
Чем опасна низкая плотность?
Падение концентрации серной кислоты приводит к уменьшению емкости с одновременным ростом внутреннего сопротивления пластин батареи. В результате аккумулятор не в состоянии подавать требуемый пусковой ток. Дополнительной проблемой является повышение температуры замерзания электролита.
Формирующиеся кристаллы льда разрушают элементы конструкции и пластиковый корпус. Высыпающаяся из решеток активная масса замыкает пластины, что приводит к ускоренному саморазряду и окончательному выходу батареи из строя.
Как повысить плотность электролита в АКБ?
Владелец автомобиля может восстановить плотность несколькими способами:
- заливкой в банки электролита с повышенной концентрацией серной кислоты, позволяющей компенсировать падение удельного веса;
- зарядить аккумулятор с помощью внешнего блока питания;
- произвести замену электролита с промывкой банок дистиллированной водой.
Восстановление возможно при наличии винтовых пробок в крышке источника питания. Многие производители (например Varta или Bosch) выпускают изделия необслуживаемого типа с запаянными банками. Для доступа потребуется частично разобрать крышку и просверлить отверстия, которые затем заклеивают или запаивают пластиком. При разведении электролита следует учесть, что не допускается введение дистиллированной воды в кислоту. Работы по обслуживанию АКБ рекомендуется выполнять в перчатках и защитных очках в хорошо проветриваемом помещении.
Корректирующий электролит
Алгоритм действий:
- Отключить аккумулятор от бортовой сети автомобиля и занести в помещение, дождаться прогрева корпуса до температуры +20…+25°С. Протереть корпус от пыли и следов электролита тряпкой, смоченной в растворе нашатырного спирта.
- Отвернуть вентиляционные пробки (при наличии) и подсоединить клеммы зарядного устройства.
- Выставить ток зарядки на уровне 10% от емкости батареи или перевести регулятор в положение автоматической работы и произвести восстановление ресурса на протяжении 8-10 часов. Процесс проводят в проветриваемом помещении, поскольку электролит выделяет пары кислоты и взрывоопасный водород.
- После окончания зарядки и прекращения выделения газов («кипения» электролита) провести замер ареометром. Допустимая плотность находится в диапазоне от 1,24 до 1,27 г/см³, отклонение между ячейками не должно быть больше 0,01 г/см³. Если разница превышает допустимый порог или удельный вес ниже минимального уровня, то необходимо ввести свежий электролит. Следует учитывать, что корректирующее вещество нельзя использовать при повышенном удельном весе рабочей жидкости в батарее.
- Откачать часть жидкости медицинским шприцем или резиновой грушей с удлинительной трубкой.
- Залить корректирующий раствор плотностью 1,33 г/см³ до нормального уровня (жидкость должна перекрывать верхние кромки пластин на 15-20 мм).
- Провести зарядку батареи на протяжении 30-40 минут в автоматическом режиме.
- Выдержать аккумулятор 2 часа для смешивания фракций, стабилизации температуры и удаления пузырей газа из жидкости.
- Повторно проверить плотность, при недостаточном параметре провести процедуру повторно. Для снижения удельного веса следует слить часть электролита и ввести дистиллированную воду. Если выровнять плотность в ячейках не удается, то необходимо провести стабилизирующую зарядку (сила тока в цепи в 2-3 раза ниже номинального значения).
- Закрыть пробки и подключить аккумулятор к бортовой сети машины.
Выравнивание с помощью зарядки
Методика снижения плотности зарядкой подразумевает подачу тока силой 1-2 А на клеммы заряженной батареи. В результате кипения из электролита постепенно уходит дистиллированная вода, плотность повышается до нормативного значения.
Процедура занимает до 24 часов, владельцу необходимо периодически проверять удельный вес ареометром. В случае чрезмерного роста показателя необходимо разбавить электролит дистиллированной водой.
Полная замена
Последовательность действий при обслуживании:
- Снять батарею и очистить корпус от грязи ветошью и нашатырным спиртом, а затем открыть пробки. Если аккумулятор оснащен монолитной крышкой, то потребуется просверлить отверстия диаметром 2-3 мм. При выполнении работы важно не повредить свинцовые пластины. Не допускается сверление боковых крышек или дна корпуса, поскольку герметично заделать каналы невозможно.
- Откачать электролит из банок подручными средствами (например медицинским шприцем или корпусом ареометра с вынутым поплавком). Слитую жидкость собрать в отдельную емкость и утилизировать. Не допускается переворачивание корпуса, поскольку скопившийся шлам попадает в зазоры между пластинами и вызывает короткие замыкания.
- После обнажения верхних кромок пластин наклонить корпус вбок на 45° и откачать остатки жидкости. Поскольку между электродами и в нижней части банок остается реагент, то следует заполнить ячейки дистиллированной водой для промывки. Для улучшения проникновения рекомендуется покачивать корпус в разных направлениях с наклоном до 45°. Промывку следует повторить 2-3 раза. Полностью удалить старый электролит невозможно (например, жидкость остается в решетках пластин).
- Вставить в отверстие воронку и залить свежий электролит с требуемой плотностью до нормативного уровня. В батареи с монолитной крышкой жидкость можно заправить резиновой грушей.
- Закрыть пробки или заклеить отверстия, а затем выдержать аккумулятор в течение 5-6 часов. Подавать ток силой 0,1 А на протяжении суток, избегая кипения электролита, а затем увеличить показатель до 10% от номинальной емкости АКБ и довести напряжение на клеммах до 14,5-14,7 В.
Профилактические меры и советы по эксплуатации АКБ
В процессе эксплуатации автомобильной батареи необходимо удалять загрязнения с поверхности корпуса. Оседающие пары электролита формируют дорожки между полюсами, что приводит к ускоренной разрядке. На машинах старого образца не предусмотрена система электронного контроля зарядки, поэтому необходимо периодически проверять напряжение в бортовой сети. В случае использования цифровой шины CAN или LIN блок управления автоматически поддерживает АКБ в заряженном состоянии.
Если автомобиль эксплуатируется в регионах с минимальными температурами ниже -50°С, то плотность электролита необходимо довести до 1,29 г/см³ (при полной зарядке). Дополнительная серная кислота позволяет снизить точку кристаллизации раствора. Если машина эксплуатируется зимой редко или водитель совершает частые поездки на короткие расстояния, то следует периодически заряжать батарею от внешнего устройства.
Аккумулятор. Устройство. Характеристики | Прием аккумуляторов в Санкт-Петербурге по лучшим ценам
С первой ее функцией — обеспечением запуска двигателя — мы сталкиваемся каждый день. Есть и вторая — реже применяемая, но от того не менее значимая — использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с инжекторным впрыском аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором. Из этого следует, что следует крайне осторожно относиться к отключению аккумулятора на работающем двигателе. Карбюраторному двигателю ничего не будет, а вот как поведёт себя компьютер, управляющий распределённым впрыском — одному богу известно… Можно загубить компьютер.
Все стартерные батареи, выпускаемые в настоящее время для автомобилей, являются свинцово-кислотными. В основу их работы заложен известный еще с 1858 г., и по сей день остающийся практически неизменным принцип двойной сульфатации.
Как наглядно видно из формулы, при разряде батареи (стрелка вправо) происходит взаимодействие активной массы положительных и отрицательных пластин с электролитом (серной кислотой), в результате чего образуется сульфат свинца, осаждающийся на поверхности отрицательно заряженной пластины и вода. В итоге плотность электролита падает. При зарядке батареи от внешнего источника происходят обратные электрохимические процессы (стрелка влево), что приводит к восстановлению на отрицательных электродах чистого свинца и на положительных — диоксида свинца. Одновременно с этим повышается плотность электролита. Любая автомобильная батарея представляет из себя корпус — контейнер, разделенный на шесть изолированных ячеек — банок (см. рис.1).
Каждая банка является законченным источником питания напряжением порядка 2.1 В. В банке находится набор положительных и отрицательных пластин, отделенных друг от друга сепараторами. Как известно из школьного курса физики, две разнозаряженные пластины уже сами по себе являются источником постоянного напряжения, параллельное же их соединение увеличивает ток. Последовательное соединение шести банок и дает батарею с напряжением порядка 12.6 — 12.8 В. Любая из пластин, как положительная, так и отрицательная, есть ни что иное, как свинцовая решетка, заполненная активной массой. Активная масса имеет пористую структуру с тем, чтобы электролит заходил в как можно более глубокие слои и охватывал больший ее объем. Роль активной массы в отрицательных пластинах выполняет свинец, в положительных — диоксид свинца.
Вес залитой АКБ ёмкостью 55 Ач составляет около 15.5 кг. Эта цифра складывается из массы электролита — 5кг (что соответствует 4,5 л), массы свинца и всех его соединений — 10 кг, а также 1 кг, приходящегося на долю бака и сепараторов.
2. Основные характеристики аккумуляторных батарей.
2.1. Расход воды.
Показатель, имеющий непосредственное отношение к степени обслуживаемости батареи. Определяется в лабораторных условиях. Батарея считается необслуживаемой, если она имеет очень низкий расход воды в эксплуатации. Необслуживаемые батареи не требуют доливки дистиллированной воды в течении года и более при условии исправной работы регулятора напряжения. На расход воды прямое влияние оказывает процентное содержание сурьмы в свинцовых решетках пластин. Как известно, сурьма добавляется для придания пластинам достаточной механической прочности. Однако у каждой медали есть обратная сторона. Сурьма способствует расщеплению воды на кислород и водород, следствием чего является выкипание воды и снижение уровня электролита. В батареях предыдущего поколения содержание сурьмы доходило до 10%, в современных этот показатель снижен до 1.5 %. Панацею от этой беды фирмы видят в освоении т.н. гибридной технологии — замене сурьмы в одной из пластин на кальций. Кальций в решетке является веществом нейтральным по отношению к воде, не снижая при этом механической прочности решеток. А потому разложения воды не происходит и уровень электролита остается неизменным.
2.2. Долговечность батареи.
Средний срок службы современных АКБ при условии соблюдения правил эксплуатации, а это недопущение глубоких разрядов и перезарядов, в том числе по вине регулятора напряжения — составляет 4-5 лет.
Наиболее губительными для батарей являются глубокие разряды. Оставленные на ночь включенными световые приборы, либо другие потребители способны разрядить ее до плотности 1.12 — 1.15 г/см3, т.е. практически до воды, что приводит к главной беде аккумуляторов — сульфатации свинцовых пластин. Пластины покрываются белым налетом, который постепенно кристаллизуется, после чего батарею практически невозможно восстановить. Отсюда вытекает главный вывод — необходимо постоянно следить за состоянием батареи, периодически замерять плотность электролита. Особенно актуально это в зимнее время. Следует отметить, что сульфатация в определенных пределах — явление нормальное и присутствует всегда. (Вспомните — на основе теории двойной сульфатации построен принцип работы батарей). Но при малом разряде и последующей зарядке батарея легко восстанавливается до исходного состояния. Это возможно и при глубоком разряде батареи, но только в том случае, если следом сразу же последует заряд. Если же разряжать батарею длительное время, не давая ей «подпитки», то падение плотности ниже критического значения неизбежно приводит к образованию кристаллов сульфата свинца, не вступающих в реакцию ни при каких обстоятельствах. А это означает, что начался необратимый процесс сульфатации.
Не менее опасен для батареи и перезаряд. Это происходит при неисправном регуляторе напряжения. При этом электролит начинает «кипеть» — происходит разложение воды на кислород и водород и понижение уровня электролита. Вот почему необходимо следить за зарядным напряжением. Естественно, это не составляет труда, если на панели приборов присутствует вольтметр. Ну а если его нет? В этом случае также можно довольно просто оценить зарядное напряжение. Для этого запустите и прогрейте двигатель, установив средние обороты и подключите тестер (в режиме вольтметра) между «+» и «массой» аккумуляторной батареи. Нормальный зарядный режим батареи обеспечивается в диапазоне 14±0.5В. Если напряжение меньше — стоит проверить натяжение ремня, надежность контактных соединений цепей системы электроснабжения. Если же это не помогает — неисправность нужно искать в регуляторе напряжения. Впрочем, точно также вина ложится на регулятор, если напряжение превышает 14.5 В.
В последнее время широкое распространение получили сепараторы карманного типа — так называемые конвертные сепараторы. Их название говорит за себя — в эти конверты помещают одноименно заряженные пластины. Такая конструкция увеличивает срок службы батареи, так как осыпающаяся в процессе эксплуатации активная масса остается в конверте, тем самым предотвращается замыкание пластин.
2.3. Рекомендации по эксплуатации.
Батарея, не эксплуатировавшаяся в течении длительного времени (4-5 мес.) нуждается в подзарядке. Связано это с тем, что батареям свойственно такое явление, как саморазряд. На графиках (рис. 2, 3) показаны характеризующие саморазряд величины для различных батарей. В первом случае — это падение напряжения, во втором — снижение плотности от времени хранения.
Впрочем, зачастую подзарядки требует и находящаяся в эксплуатации батарея. Плотность полностью заряженной батареи составляет 1.27 — 1.28 г/см3, напряжение — 12.5В. О степени разряженности батареи судят по плотности электролита. Чем ниже плотность электролита, тем сильнее батарея разряжена. Уменьшение плотности на 0.01 г/см3 по сравнению с номинальной означает, что батарея разрядилась примерно на 6 — 8%.
Используя график (рис. 4) можно оценить зависимость степени разряженности батареи от плотности. Степень разряженности определяют по той банке, в которой плотность электролита минимальная. Всем известна аксиома, тем не менее позволим повторить ее еще раз — батарею, разряженную летом более, чем на 50%, а зимой более, чем на 25%, необходимо снять с автомобиля и зарядить. При этом следует помнить, что пониженная плотность зимой более опасна, так как кроме всего прочего может привести к замерзанию электролита. Так, при плотности электролита 1.2 г/см3 температура его замерзания составляет около -20°С. Также необходимо подзарядить батарею, если плотность в разных банках отличается более, чем на 0.02 г/см3. Оптимальной является зарядка батареи током, равным 0.05 от её ёмкости. Для батареи с ёмкостью 55 Ач эта величина составляет 2.75 А. Чем меньше зарядный ток, тем глубже заряд. Однако не стоит впадать в крайность — при совсем низком токе батарея просто не «закипит», к тому же время зарядки будет несравнимо большим. Наоборот, при очень большом токе батарея «закипит» значительно быстрее, но при этом не успеет зарядиться на все 100%. Признаками окончания зарядки служит бурное выделение газа (так называемое «кипение») и неизменяющаяся на протяжении 1-2 часов плотность электролита.
Для ориентировочной оценки времени, требуемого на зарядку батареи, можно воспользоваться следующим алгоритмом. Первоначально, используя график (рис. 4) необходимо определить степень разряженности батареи, исходя из реальной плотности АКБ, замеренной ареометром. Далее по степени разряженности определяем потерянную ёмкость (или ёмкость, которую необходимо принять батарее). Затем, выбрав величину зарядного тока, вычисляем ориентировочное время зарядки по формуле:
Тут следует отметить, что не вся энергия идет на повышение ёмкости. КПД процесса составляет 40 — 50%, остальное тратится на нагрев, а также связанные с этим электрохимические процессы. Потому реальное время увеличивается примерно вдвое от расчетного (что и учитывается коэффициентом «2» в формуле). Нужно сказать, что использование данного алгоритма оправдано лишь для облегчения процедуры, но ни в коей мере не избавляет от контроля за ходом зарядки. Процесс заряда, а особенно его окончание Вам необходимо контролировать самому, дабы не прозевать начало бурного кипения.
Другой вариант — использование для этих целей автоматических зарядных устройств, отличающихся тем, что зарядка идет при постоянном напряжении, но автоматически изменяющемся токе в зависимости от степени заряженности батареи. При этом зарядное устройство перестает давать ток, если батарея полностью заряжена. Принцип, используемый в подобных устройствах аналогичен зарядке от генератора на автомобиле.
Для примера определим время зарядки батареи ёмкостью 55 Ач током в 5А, плотность которой составляет 1.25 г/см3. Как видно из графика, при данной плотности батарея разряжена на 25%, что означает потерю ёмкости на величину
Таким образом , примерное время зарядки
Оптимальным же способом зарядки батареи, и это подтверждают результаты проводимых испытаний, является её заряд от бортовой сети автомобиля (естественно, при условии исправности последней). При данном способе, во первых, невозможен перезаряд, а во-вторых, происходит постоянное перемешивание электролита и наиболее полное его проникновение во внутренние слои активной массы. Однако было бы ошибочным полагать, что заряд батареи начинается сразу же после пуска двигателя и продолжается все время, пока двигатель в работе. Исследования показывают, что батарея начинает принимать заряд только после прогрева электролита до положительной температуры, что при эксплуатации в зимних условиях происходит примерно через час после начала движения. Именно этим и опасен довольно распространенный, по крайней мере в нашем автомобильном городе, способ эксплуатации транспортных средств. Холодный запуск зимой с получасовым движением до работы, и затем редкие непродолжительные поездки на протяжении рабочего дня не дают прогреться электролиту и, следовательно, зарядиться Вашей батарее. Тем самым разряженность АКБ увеличивается изо дня в день и в итоге может привести к печальному результату.
Физические процессы, происходящие при пуске двигателя, отличаются от процессов при разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та её часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы.
Нормальный запуск двигателя при однократном вращении стартера в течении 10 с забирает ёмкость 300А х 10с = 3000 Ас = 0.83 Ач, что составляет около 1.5% от ёмкости аккумулятора.
При медленном же разряде участвуют не только поверхностные слои активной массы, но и глубинные, потому и разряд происходит более глубокий. Однако это не означает, что стартерные режимы не так губительны для батареи — стартером точно также можно разрядить батарею до критической величины.
Каковы же признаки выхода из строя батареи?
•
Батарея не заряжается, плотность низкая и не повышается в процессе заряда.
•
Большой саморазряд — батарея зарядилась, но не держит заряд.
Можно попытаться потренировать батарею, однако если произошло осыпание активной массы пластин, либо кристаллизация сульфата свинца, то это уже не исправить.
Вообще, освоить способ оценки степени возможной разрядки батареи от каких-либо действий (в том числе и осознанных) не составит большого труда. Необходимо усвоить несколько истин и запомнить несколько цифр.
Батарея начинает принимать заряд лишь только после прогрева электролита до положительной температуры (как вы понимаете, при температуре воздуха -20°С температура электролита в батарее хранящегося на свежем воздухе автомобиля будет примерно такой же.)
Коэффициент полезного действия процесса зарядки составляет примерно 50%.
Каждый автомобильный генератор характеризуется следующими показателями:
• ток отдачи генератора при работе двигателя на холостом ходу;
• ток отдачи генератора при работе двигателя на номинальных оборотах.
Для ВАЗовских автомобилей эти цифры имеют следующие значения:
Таблица 1
Модель автомобиля | 2101-2106 | 2108-2109 | 2110 |
Ток отдачи на холостом ходу | 16 | 24 | 35 |
Ток отдачи на номинальных оборотах | 42 | 55 | 80 |
Как видно из таблицы, на последних моделях автомобилей Волжского автозавода устанавливаются генераторы, имеющие характеристики тока отдачи, в два раза превосходящие по величине характеристики генераторов первых моделей.
И наконец примерное потребление энергии автомобильными потребителями:
Таблица 2
Потребитель | Ток (А) |
Зажигание | 2 |
Габариты | 4 |
Ближний свет | 9 |
Дальний свет | 10 |
Вентиляторотопителя 1-я скорость | 5-7 |
Вентиляторотопителя 2-я скорость | 10-11 |
Стеклоочистители | 3-5 |
Магнитола | 5 |
Итого | 38-48 |
Таким образом, оставленные включёнными габариты за три часа «съедят» 4А х 3ч= 12 Ач ёмкости батареи, что соответствует разряду приблизительно на 20%. Это не страшно для одного раза. Однако повторив это ещё раз, Вы уже рискуете не завести свою машину, особенно, если дело происходит зимой, так как разряд составит порядка 40% (тем более, что к тому же зимой батареи, как правило, эксплуатируются заряженными далеко не на 100%).
Аналогично можно прикинуть, что Вы имеете при продолжительной работе двигателя на холостом ходу. Как уже показано выше, ток отдачи генератора автомобиля ВАЗ-2108 на холостом ходу составляет 24 А. Вычитаем из этой величины 2А, необходимые для обслуживания системы зажигания. Остается 22 А. Используя таблицу 2, нетрудно прикинуть, что можно включать с тем, чтобы хоть немного досталось бы и аккумулятору (при этом помните про КПД зарядки, составляющий 50%).
Для владельцев иномарок с автоматической коробкой передач картина ещё более сложная. Обычно, стоя в пробке или на светофоре, Вы не переключаетесь на нейтраль, а давите ногой на тормоз. Это понижает обороты двигателя от стандартных 800-900 об./мин. до 600-700 об./мин., что, соответственно понизит ток, выдаваемый генератором, а стоп-сигналы добавят ещё пару ампер потребления тока. Да и обогрев заднего стекла у немцев, например, существенно мощнее чем у отечественных автомобилей.
Следует знать, что зимние условия эксплуатации автомобиля в принципе очень тяжелы для аккумуляторной батареи. Наверняка будут полезны следующие данные. Результаты проводимых в ГенДР исследований говорят о том, что при эксплуатации автомобиля в очень тяжелых условиях (испытания по так называемому режиму «город-зима-ночь») аккумулятор получает порядка 1А в час. Нередко доводилось наблюдать картину, как растерянный автовладелец, помыв на автоматической мойке свой автомобиль, тщетно пытается завести его под нетерпеливые реплики напирающих сзади очередников. И вот кто-то подсказывает — что ты мучишься, включай передачу и выезжай на стартере. Понятно, что советчика мало волнует чужой автомобиль, но услугу эту иначе как медвежьей не назовешь. Категорически запрещается использовать батарею вместе со стартером в качестве электропривода автомобиля (причём в большей степени из-за стартера), так как помимо полного разряда АКБ это может привести к выходу из строя стартера, загоранию проводки со всеми вытекающими последствиями. Последнее заявление довольно спорное. На тёплом двигателе, исправной АКБ и проводке при движении «на стартёре», нагрузка на него гораздо меньше, чем при заводе холодного двигателя. Другое дело, что движение на стартёре можно использовать только в совершенно экстремальной ситуации, например уехать с железнодорожного переезда, если заглох на нём. А уж с мойки-то точно на стартёре уезжать нельзя. Пусть мойщики продуют сухим воздухом трамблёр, контакты высоковольтных проводов, сигнализацию (если они не догадались её закрыть полиэтиленом). Машина с мойки должна уезжать сама!
Исправное состояние аккумуляторной батареи особенно актуально. В отличие от других элементов электрооборудования она относительно проста в обслуживании и не требует глубоких познаний в области химии и электротехники. Вместе с тем аккумулятор не прощает пренебрежительного отношения и при соблюдении набора правил способен служить довольно продолжительный период.
Прежде всего, следует проводить периодический осмотр батареи — желательно не реже двух раз в месяц. Во-первых, очистите её поверхность от пыли и грязи. Осмотрите выводные штыри и наконечники. При обнаружении признаков коррозии зачистите повреждённые участки и смажьте их техническим вазелином. Следует также проверить и при необходимости прочистить вентиляционные отверстия на пробках. Вооружившись вольтметром, замерьте величину напряжения на клеммах аккумуляторной батареи при работающем двигателе. Идеальным считается диапазон от 14 до 14.7 вольта.
Если автомобиль поставлен, что называется, на прикол до прихода весны, об аккумуляторе следует позаботиться следующим образом. Снятая батарея должна быть полностью заряжена, очищена (воспользуйтесь специальной жидкостью или «дедовским» способом — содовым раствором) от внешних наслоений и тщательно протёрта. Хранить её лучше в сухом, вентилируемом помещении. Следует помнить, что чем ниже температура хранения, тем медленнее идёт процесс саморазряда. Раз в месяц измеряйте плотность электролита, и если батарея проработала более трёх лет, контроль плотности проводится чаще. По окончании хранения проверяется плотность электролита, и если плотность понизилась на 0.02 г/куб. см и более надлежит зарядить батарею. Если перед установкой аккумулятора на автомобиль плотность электролита находится в норме, то и в этом случае следует дать батарее 20-30-минутный заряд током 4—5 ампер.
Новую сухозаряженную батарею перед установкой на автомобиль надлежит предварительно заполнить электролитом. Для этого можно воспользоваться готовым составом (плотность 1.4 или 1.27 г/см) или приготовленным самостоятельно при строгом соблюдении мер безопасности из концентрированной серной кислоты и дистиллированной воды. Заливать электролит в «банки» аккумулятора следует тонкой струйкой до того момента, когда его уровень поднимется на 10-15 мм выше предохранительного щитка или до нижнего уровня раструба горловины.
После этого батарея выдерживается до двух часов, чтобы пластины и сепараторы пропитались электролитом. Далее проверяется напряжение аккумулятора в ненагруженном состоянии и плотность электролита. По окончании процесса насыщения плотность и уровень электролита несколько понизятся, что вполне естественно.
В случае понижения плотности электролита более чем на 0.03 г/куб. см, а напряжения до 10—12 вольт аккумулятор нуждается в подзарядке током, численно равным 0.1 ёмкости батареи. Продолжительность заряда — до пяти часов с начальной температурой электролита не выше 27 град. Если падение плотности не превысило 0.03 г/см, а напряжение держится на уровне более 12 вольт, то батарея пригодна к использованию. Недостаточный уровень следует поднять до нормы, доливая электролит той же плотности, что и в начале заливки. После заливки электролита подзарядка является обязательной в следующих случаях:
— батарея не использовалась в течение двух суток после заливки;
— предстоящая эксплуатация будет протекать в тяжёлых условиях (низкая температура, частые пуски двигателя и пр.)
— новая батарея хранилась в сухозаряженном виде более одного года с момента выпуска.
Для продления срока службы аккумулятора следите за натяжением ремня генератора, не перегружайте бортовую сеть дополнительными потребителями электроэнергии. Избегайте ускоренных методов зарядки и следите за состоянием электролита, в который могут попасть грязь, бензин, масло. Учтите, что жизненный цикл батареи определяется количеством циклов «заряд-разряд» и степенью разрядки.
После двух последовательных длительных попыток завести двигатель при низкой температуре воздуха дайте аккумулятору передышку на 20—30 секунд. При температуре ниже −10 град. перед включением стартёра предварительно прогрейте батарею, включив фары на 10—15 секунд. Не забывайте менять моторное масло в соответствии с сезоном. Окончанием срока службы аккумулятора считается снижение ёмкости до 35—40% от номинальной, а также уменьшение продолжительности стартёрного разряда до 1.5 мин. при +25 град. Признаками выработки считаются ускоренный полный саморазряд, разброс плотности электролита между отдельными «банками», быстрое нарастание плотности электролита при зарядке.
Как поднять плотность электролита в аккумуляторе
Как поднять плотность аккумулятора автомобиля? Часто владельцы автомобилей сталкиваются с такой проблемой, что оставленный на пару дней автомобиль не может завестись, хотя в последний раз, когда на нём ездили, заряд не был полностью истрачен.
Если тщательная проверка показала, что на самом деле за это время нигде не работал случайно забытый потребитель электроэнергии, типа невыключенной автомагнитолы или лампочки освещения багажника, значит, у аккумулятора есть проблема, и он нуждается в помощи.
Вначале нужно провериться. Как правило, проблемы могут содержаться в электросети, но в таком случае стартер хотя бы подаёт некоторые признаки жизнедеятельности. Никакого звука работы мотора и т. п. не возникнет только в том случае, если тока от аккумулятора не поступает вообще и никакого. Тогда нужно аккумулятор подзарядить, но при этом нужно понаблюдать за тем, как проходит зарядка.
Можно заметить, что прибор попросту вообще не принимает заряд. Причина в таком случае очевидна: снижение плотности электролитического раствора достигло критического значения, и её нужно повысить. Часть раствора просто испарилась, что могло случиться, например, при перезарядке устройства, или когда аккумулятор стоял открытым и в этот момент «закипел».
Чтобы не позволить аккумулятору высохнуть полностью, в него доливают дистиллированной воды, однако, при этом плотность собственно серной кислоты, которая участвует в восстановительных реакциях, существенно падает. Чтобы поднять плотность, нужно на температуре 22°С померять плотность жидкости – только аккуратно, потому что электролит может брызгать или испаряться, работать с ним нужно в перчатках из резины.
Как поднять плотность электролита в аккумуляторе
Ни в коем случае нельзя доливать воду в кислоту – это приведёт к экзотермической реакции с выделением тепла и пара или к взрыву. Доливать можно только в воду – кислоту. Переворачивать батарею тоже нельзя, потому что возможно осыпание более слабых пластин, что приведёт к замыканию. Для слива электролита нужно подготовить два сосуда – для нового и старого электролита. Нужное количество кислоты нужно правильно рассчитывать и до того, как использовать для пайки пластмассу, нужно проверить её стойкость к воздействию электролита.
Действовать нужно примерно как при замене электролита, только старый раствор не выливается, а смешивается с заблаговременно приготовленным новым раствором с большей плотностью, в результате чего общая плотность выравнивается до нужного значения.
Достижение высокой плотности энергии за счет увеличения выходного напряжения: полностью обратимая батарея на 5,3 В
Основные характеристики
- •
Стабильные электролиты 5,5 В позволяют использовать литий-металлический аккумулятор 5,3 В и литий-ионный аккумулятор 5,2 В
- •
Изучить механизм лития-делитирования 5,3 В LiCoMnO 4 катодов
- •
Выявить корреляцию между электролитами и CEI или SEI на электродах
Большая картина
Сегодняшняя плотность энергии аккумуляторные батареи становятся все более востребованными из-за растущих требований со стороны приближающихся электромобилей.Современные литий-ионные аккумуляторы, основанные на химии интеркаляционного катода, оставляют относительно мало места для дальнейшего повышения плотности энергии, поскольку удельная емкость этих катодов приближается к теоретическим уровням. Повышение выходного напряжения элемента — это возможное направление значительного увеличения плотности энергии батарей. Обширные исследования были посвящены изучению ячеек> 5,0 В, но были достигнуты лишь ограниченные успехи из-за узкого окна электрохимической стабильности традиционных электролитов (<5.0 В). Здесь мы разрабатываем электролит 5,5 В (1 M LiPF 6 в FEC / FDEC / HFE с добавкой LiDFOB), который позволяет катодам LiCoMnO 4 5,3 В обеспечивать плотность энергии 720 Вт · ч кг -1 для 1000 циклов. и 5,2 В графита || LiCoMnO 4 полных элементов для обеспечения плотности энергии 480 Вт · ч · кг -1 для 100 циклов.
Резюме
Плотность энергии нынешних литий-ионных аккумуляторов ограничена низкой емкостью интеркаляционного катода, что оставляет относительно мало возможностей для дальнейшего улучшения, поскольку удельная емкость этих катодов приближается к теоретическим уровням.Увеличение выходного напряжения элемента — возможное направление значительного увеличения плотности энергии батарей. Обширные исследования были посвящены изучению элементов питания> 5,0 В, но были достигнуты лишь ограниченные успехи из-за узкого окна электрохимической стабильности электролитов (<5,0 В). Здесь мы сообщаем о 5,5 В электролите (1 M LiPF 6 в фторэтиленкарбонате, бис (2,2,2-трифторэтил) карбонате и гидрофторэфире [FEC / FDEC / HFE] с дифтор (оксалат) боратом Li [LiDFOB ] аддитив), что позволяет 5.3 В LiCoMnO 4 катодов для обеспечения плотности энергии 720 Втч кг -1 на 1000 циклов и графита 5,2 В || LiCoMnO 4 полных ячеек для обеспечения плотности энергии 480 Втч кг -1 на 100 циклы. Электролиты на 5,5 В представляют собой большой шаг к разработке литиевых батарей высокой энергии.
Цели ООН в области устойчивого развития
ЦУР7: Доступная и чистая энергия
Ключевые слова
высокое напряжение
Литий-металлический аккумулятор
Литий-ионный аккумулятор
высокая плотность энергии
Литий-металлический анод
стабильный электролит
Рекомендуемые статьиЦитирующие статьи (0)
Просмотреть аннотацию© 2019 Elsevier Inc.
Рекомендуемые статьи
Цитирование статей
Литий-ионные батареи в разобранном виде: почему они ужасны в холодную погоду
Первый вывод заключается в том, что практически все компании, предлагающие автомобили с батарейным питанием в настоящее время, сильно отстают в технологиях и не так уж люди, кажется, хотят об этом говорить.По сути, наступление эры электромобилей уже наступило, и, несмотря на массовый рост продаж электромобилей, мы все еще используем аккумуляторные технологии, мало чем отличающиеся от той, которую открыл Алессандро Вольта около 220 лет назад.
Как и homo sapiens, современная батарея может работать на 100 процентов при умеренных температурах, в основном около 20 градусов по Цельсию (68 по Фаренгейту). Между прочим, люди, используемые в качестве батарей во вселенной Матрицы, были не просто сюжетной уловкой, на самом деле за этим стоит некоторая наука.
Если температура окружающей среды батареи, которая работает максимально эффективно при 20 градусах Цельсия, повышается до 30 градусов, ее эффективность снижается примерно на 20 процентов. Если он постоянно заряжается и перезаряжается при 45 градусах Цельсия (113 F), потеря производительности может возрасти до колоссальных 50 процентов.Однако имейте в виду, что эти цифры не обязательно означают потерянный запас хода электромобиля.
При этом транспортные средства с батарейным питанием не существуют в пустоте, и на их температуру может влиять широкий спектр внешних и даже внутренних факторов, поэтому некоторые, но не все современные автопроизводители имеют интегрированные системы управления температурой. на своих электромобилях. Несмотря на то, что эти системы потребляют изрядную долю энергии, эти системы помогают регулировать температуру батарей, чтобы оптимизировать их долгосрочную емкость и краткосрочную производительность одновременно.
К сожалению, даже этих систем управления недостаточно, когда внешняя температура резко падает, поэтому аккумуляторы, которые в суровые зимы становятся слишком частыми, почти как неотъемлемая черта всех современных электромобилей и любых других устройств с батарейным питанием.
Что ж, литий-ионные аккумуляторы, которые составляют сегодня большинство источников питания электромобилей на дорогах, тоже не очень любят работать при экстремальных температурах, а тем более в мороз. С другой стороны, они работают намного лучше, чем свинцово-кислотные или никель-металлгидридные аккумуляторы старой школы, но проблема все еще существует, и ни один крупный производитель автомобилей не отклонился от предложения почти такого же типа несовершенной технологии.После этой разорвавшейся бомбы нам, вероятно, следует погрузиться в технические детали. Магическая химия за кулисами
Выбранные в больших масштабах в основном потому, что их плотность энергии примерно в два с половиной раза превышает химический состав конкурирующих аккумуляторов, современные литий-ионные аккумуляторы могут предлагать около 150 Втч на килограмм веса.Это означает, что они могут быть меньше и легче конкурирующих продуктов, что является одной из их основных положительных особенностей.
Обычно они содержат графитовый анод, катод из оксида лития-кобальта, который может быть заменен никелем или марганцем, и жидкий карбонатный электролит с одним типом растворенной соли лития.
Когда батарея разряжается, ионы лития перемещаются от графитового анода к катоду в так называемом процессе интеркаляции, который включает в себя движение электронов в том же направлении с использованием внешней цепи.В процессе обратной зарядки ионы лития от катода диффундируют обратно к графитовому аноду в сопровождении тех же электронов, использующих внешнюю цепь.
Говоря более короткими словами, это электрохимическая реакция, для которой необходимо, чтобы ряд переменных был постоянным, чтобы быть эффективными все время, в противном случае она может замедлиться, прекратить или даже вызвать постоянное короткое замыкание в некоторых элементах батареи.
При низких температурах производительность значительно падает, потому что химическая реакция просто замедляется, но только когда дело доходит до разрядки аккумулятора.Литий-ионные аккумуляторы могут питать электромобиль при температуре — 40 градусов по Цельсию (- 40 по Фаренгейту), хотя и с меньшей скоростью разряда, и только в том случае, если они оснащены системами управления температурой, но вы просто не сможете их зарядить при таких температурах, потому что они просто слишком сильно замедляются. От 0 до 200 В за 220 лет
От 0 до 220 вольт за 220 лет — это довольно плохой показатель ускорения, что является одной из причин, по которой Porsche стал первым автопроизводителем, построившим электромобиль на базе 800-вольтовой архитектуры. Более высокое напряжение означает более тонкую проводку, что приводит к более стабильной работе, сокращению времени зарядки, меньшему весу и меньшему пространству, занимаемому внутри автомобиля.
Тем не менее, Taycan также застрял с литий-ионной батареей, которая скоро станет архаичной, но Porsche входит в число множества автопроизводителей, которые постоянно ищут улучшения. Среди наиболее многообещающих связаны с использованием аккумуляторных электролитов, содержащих ионные жидкости, которые по существу представляют собой просто соли, плавящиеся при низких и умеренных температурах. В отличие от других электролитов, они негорючие и обладают термической стабильностью при гораздо более высоких температурах.
Другие области альтернативных исследований аккумуляторов включают литий-воздушные конструкции, в которых в качестве окислителя используется кислород из атмосферы, что делает их намного легче, чем нынешние литий-ионные аккумуляторы.Кроме того, их удельная энергия сопоставима с удельной энергией бензина, что делает их идеальными для наших будущих электромобилей.
Литий-серные батареи с еще более высокой удельной мощностью, вероятно, являются лучшим выбором для действительно революционных батарей будущего, но их разработка все еще находится на очень ранней стадии. До этого времени мы все застряли на технологии 30-летней давности, которая была обновлена в основном в отношении затрат, а не характеристик в холодную погоду.
Отражение катодной химии литий-ионных аккумуляторов
Арман, М. и Тараскон, Дж. М. Создание лучших батарей. Nature 451 , 652–657 (2008).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Мантирам А. Взгляд на технологию литий-ионных батарей. САУ Cent. Sci. 3 , 1063–1069 (2017).
Артикул CAS PubMed PubMed Central Google ученый
Гуденаф, Дж. Б. и Парк, К.-С. Литий-ионная аккумуляторная батарея: перспектива. J. Am. Chem. Soc. 135 , 1167–1176 (2013).
Артикул CAS PubMed PubMed Central Google ученый
,, Уиттингем, М.С., Якобсон, А.Дж., , Intercalation Chemistry, (Academic Press, New York, 1982).
Google ученый
Аронсон, С., Сальцано, Ф. Дж. И Беллафиоре, Д. Термодинамические свойства пластинчатых соединений калий-графит на основе измерений ЭДС в твердом состоянии. J. Chem. Phys. 49 , 434–439 (1968).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Gamble, F. R. et al. Интеркаляционные комплексы оснований Льюиса и слоистых сульфидов: большой класс новых сверхпроводников. Science 174 , 493–497 (1971).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Томпсон А.Х. Электрон-электронное рассеяние в TiS 2 . Phys. Rev. Lett. 35 , 1786–1789 (1975).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Уиттингем М.С. Накопление электрической энергии и химия интеркаляции. Science 192 , 1126–1127 (1976).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Кох В.Р. Состояние вторичного литиевого электрода. J. Источники энергии 6 , 357–370 (1981).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Брандт К. Историческое развитие вторичных литиевых батарей. Твердотельный ион. 69 , 173–183 (1994).
Артикул CAS Google ученый
Гуденаф, Дж. Б. Оксиды металлов. Prog. Solid State Chem. 5 , 145–399 (1971).
Артикул CAS Google ученый
Мидзусима К., Джонс П. К., Вайзман П. Дж. И Гуденаф Дж. Б. Ли x CoO 2 (0
Артикул CAS Google ученый
Nishizawa, M., Yamamura, S., Itoh, T. & Uchida, I. Необратимое изменение проводимости Li 1 – x CoO 2 при электрохимическом введении / извлечении лития, желательно для батарей . Chem. Связь . 1631 (1998).
Chebiam, R.V., Prado, F. & Manthiram, A.Мягкий химический синтез и характеризация слоистого Li 1 − x Ni 1 − y Co y O 2 − δ (0 ≤ x ≤ 1 и 0 ≤ y ≤ 1). Chem. Mater. 13 , 2951–2957 (2001).
Артикул CAS Google ученый
Чебиам Р. В., Каннан А. М., Прадо Ф. и Мантирам А. Сравнение химической стабильности катодов с высокой плотностью энергии литий-ионных аккумуляторов. Electrochem.Commun. 3 , 624–627 (2001).
Артикул CAS Google ученый
Venkatraman, S., Shin, Y. & Manthiram, A. Фазовые отношения, структурная и химическая стабильность заряженного Li 1 − x CoO 2 − δ и Li 1-x Ni 0,85 Co 0,15 O 2-δ . Electrochem. Solid State Lett. 6 , A9 – A12 (2003).
Артикул CAS Google ученый
Брюс П. и Армстронг А. Р. Синтез слоистого LiMnO 2 в качестве электрода для перезаряжаемых литиевых батарей. Nature 381 , 499–500 (1996).
Артикул ОБЪЯВЛЕНИЯ Google ученый
ДеПиччиотто, Л. А., Теккерей, М. М., Дэвид, В. И. Ф., Брюс, П. Г. и Гуденаф, Дж. Б. Структурная характеристика делитированного LiVO 2 900 16. Mater. Res. Бык. 19 , 1497–1506 (1984).
Артикул CAS Google ученый
Датта, Г., Мантирам, А. и Гуденаф, Дж. Б. Химический синтез и свойства Li 1 − δ − x Ni 1 + δ O 2 и Li [Ni 2 ] О 4 . J. Solid State Chem. 96 , 123–131 (1992).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Rougier, A., Gravereau, P. & Delmas, C. Оптимизация состава электродных материалов Li 1 − z Ni 1 + z O 2 : структурные, магнитные и электрохимические исследования. J. Electrochem. Soc. 143 , 1168–1175 (1996).
Артикул CAS Google ученый
Теккерей, М.М., Дэвид, Виф и Гуденаф, Дж.Б. Структурные характеристики литированных оксидов железа Li x Fe 3 O 4 и Li x Fe 2 O 3 ( 0 <х <2). Mater. Res. Бык. 17 , 785–793 (1982).
Артикул CAS Google ученый
Теккерей М. М., Дэвид В. И. Ф., Брюс П. Г. и Гуденаф Дж. Б. Введение лития в марганцевые шпинели. Mater. Res. Бык. 18 , 461–472 (1983).
Артикул CAS Google ученый
Теккерей, М. М.Структурные аспекты слоистых и литиированных оксидов шпинели для литий-ионных аккумуляторов. J. Electrochem. Soc. 142 , 2558–2563 (1995).
Артикул CAS Google ученый
Гаммоу, Р. Дж., Де Кок, А. и Теккерей, М. М. Улучшенное сохранение емкости в перезаряжаемых литиево-литий-марганцевых (шпинель) элементах 4 В. Твердотельный ион. 69 , 59–67 (1994).
Артикул CAS Google ученый
Чой В. и Мантирам А. Сравнение растворения ионов металлов с катодов литий-ионных аккумуляторов. J. Electrochem. Soc. 153 , A1760 – A1764 (2006).
Артикул CAS Google ученый
Хантер Дж. С. Получение новой кристаллической формы диоксида марганца: λ-MnO 2 . J. Solid State Chem. 39 , 142–147 (1981).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Chun Zhan, C. et al. Осаждение Mn (II) на анодах и его влияние на затухание емкости в системах шпинелевый манганат лития – углерод. Nat. Commun. 4 , 2437 (2013).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
де Пиччиотто, Л. А. и Теккерей, М. М. Реакции введения / экстракции лития с LiV 2 O 4 900 16. Mater. Res. Бык. 20 , 1409–1420 (1985).
Артикул Google ученый
Томас, М. Г. С. Р., Дэвид, В. И. Ф., Гуденаф, Дж. Б. и Гровс, П. Синтез и структурные характеристики нормальной шпинели Li [Ni 2 ] O 4 . Mater. Res. Бык. 20 , 1137–1146 (1985).
Артикул CAS Google ученый
Чой, С. и Мантирам, А.Синтез и электрохимические свойства катодов из шпинели LiCo 2 O 4 . J. Electrochem. Soc. 149 , A162 – A166 (2002).
Артикул CAS Google ученый
Kan, WH, Huq, A. и Manthiram, A. Низкотемпературный синтез, структурная характеристика и электрохимия Ni-богатой шпинелоподобной LiNi 2 – y Mn y O 4 (0,4 ≤ y ≤ 0,1). Chem.Mater. 27 , 7729–7733 (2015).
Артикул CAS Google ученый
Чжун, К., Бонакдарпур, А., Чжан, М., Гао, Ю. и Дан, Дж. Р. Синтез и электрохимия LiNi x Mn 2-x O 4 . J. Electrochem. Soc. 144 , 205–213 (1997).
Артикул CAS Google ученый
Manthiram, A., Chemelewski, K. & Lee, E.-S. Перспектива высоковольтного LiMn 1,5 Ni 0,5 O 4 шпинельный катод для литий-ионных аккумуляторов. Energy Environ. Sci. 7 , 1339–1350 (2014).
Артикул CAS Google ученый
Гопалакришнан Дж. И Мантирам А. Топохимически контролируемое водородное восстановление молибдатов редкоземельных металлов, связанных с шеелитом. Dalton Trans. 3 , 668–672 (1981).
Артикул Google ученый
Мантирам А. и Гуденаф Дж. Б. Введение лития в Fe 2 (MO 4 ) 3 каркасы: сравнение M = W с M = Mo. J. Solid State Chem. 71 , 349–360 (1987).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Мантирам А. и Гуденаф Дж. Б. Введение лития в каркас Fe 2 (SO 4 ) 3 . J. Источники энергии 26 , 403–406 (1989).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Manthiram, A., Swinnea, JS, Sui, ZT, Steinfink, H. & G динаф, JB Влияние изменения кислорода на кристаллическую структуру и фазовый состав сверхпроводника YBa 2 Cu 3 О 7 − x . J. Am. Chem. Soc. 109 , 6667–6669 (1987).
Артикул CAS Google ученый
Ахуджа Г. Исследование некоторых вводимых соединений лития. Кандидат наук. Диссертация, Глава 5, стр. 92–114, Техасский университет в Остине (1991).
Padhi, A. K., Nanjundaswamy, K. S. & G динаф, Дж. Б. Фосфо-оливины в качестве материалов положительных электродов для литиевых аккумуляторных батарей. J. Electrochem. Soc. 144 , 1188–1194 (1997).
Артикул CAS Google ученый
Masquelier, C. & Croguennec, L. Полианионные (фосфаты, силикаты, сульфаты) каркасы в качестве электродных материалов для аккумуляторных Li (или Na) батарей. Chem. Ред. 113 , 6552–6591 (2013).
Артикул CAS Google ученый
Huang, H., Yin, SC, Kerr, T., Taylor, N. & Nazar, LF Наноструктурированные композиты: высокая емкость, высокая скорость Li 3 V 2 (PO 4 ) 3 / угольный катод для литиевых аккумуляторных батарей. Adv. Mater. 14 , 1525–1528 (2002).
Артикул CAS Google ученый
Jian, Z. et al. Углеродистый Na 3 V 2 (PO 4 ) 3 в качестве нового электродного материала для ионно-натриевых батарей. Electrochem. Commun. 14 , 86–89 (2012).
Артикул CAS Google ученый
Говер, Р.К.Б., Брайан, А., Бернс, П. и Баркер, Дж. Электрохимические вставляемые свойства фторфосфата натрия ванадия, Na 3 V 2 (PO 4 ) 2 Ф 3 . Твердотельный ион. 177 , 1495–1500 (2006).
Артикул CAS Google ученый
Нитта, Н., Ву, Ф., Ли, Дж. Т. и Юшин, Г. Материалы литий-ионных аккумуляторов: настоящее и будущее. Mater. Сегодня 18 , 252–264 (2015).
Артикул CAS Google ученый
Даути, Д. Х. и Рот, Э. П. Общее обсуждение безопасности литий-ионных аккумуляторов. Electrochem. Soc. Интерфейс 21 , 37–44 (2012).
CAS Google ученый
Данн Б., Камат Х. и Тараскон Ж.-М. Накопитель электроэнергии для сети: батарея выбора. Наука 334 , 928–935 (2011).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Kim, J. S. et al. Электрохимические и структурные свойства xLi 2 M′O 3 . (1 − x) LiMn 0,5 Ni 0,5 O 2 электродов для литиевых батарей (M ′ = Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem. Mater. 14 , 1996–2006 (2004).
Артикул CAS Google ученый
Armstrong, A. R. et al. Демонстрация потери кислорода и связанной с этим структурной реорганизации в катоде литиевой батареи. Li [Ni 0,2 Li 0,2 Mn 0,6 ] O 2 . J. Am. Chem. Soc. 128 , 8694–8698 (2006).
Артикул CAS Google ученый
Ассат, Г., Тараскон, Ж.-М. Фундаментальное понимание и практические проблемы анионной окислительно-восстановительной активности в литий-ионных батареях. Nat. Энергетика 3 , 373–386 (2018).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Li, W., Erickson., E. & Manthiram, A. Катоды из слоистого оксида с высоким содержанием никеля для автомобильных аккумуляторов на основе лития. Nat. Энергетика 5 , 26–24 (2020).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Li, W. et al. Динамическое поведение межфазных границ и его влияние на катодные материалы с высокой плотностью энергии в литий-ионных батареях. Nat. Commun. 8 , 14589 (2017).
Артикул ОБЪЯВЛЕНИЯ PubMed PubMed Central Google ученый
Li, W. et al. Mn по сравнению с Al в слоистых оксидных катодах в литий-ионных батареях: всесторонняя оценка долгосрочной циклируемости. Adv. Energy Mater. 8 , 1703154 (2018).
Артикул CAS Google ученый
Li, J. & Manthiram, A. Комплексный анализ межфазной и структурной эволюции при длительном циклировании сверхвысоких никелевых катодов в литий-ионных батареях. Adv. Energy Mater. 9 , 1
Артикул CAS Google ученый
Zou, L. et al. Решетчатое легирование регулирует межфазные реакции в катоде для повышения стабильности при циклировании. Nat. Commun. 10 , 3447 (2019).
Артикул ОБЪЯВЛЕНИЯ CAS PubMed PubMed Central Google ученый
You, Y., Celio, H., Li, J., Dolocan, A. & Manthiram, A. Стабильный химический состав поверхности модифицированных катодов с высоким содержанием никеля для литий-ионных аккумуляторов в атмосферном воздухе. Angew.Chem. Int. Эд. 57 , 6480–6485 (2018).
Артикул CAS Google ученый
Джи, Х., Ли, К. Т. и Назар, Л. Ф. A Высокоупорядоченный наноструктурированный углерод-серный катод для литий-серных батарей. Nat. Mater. 8 , 500–506 (2009).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Брюс, П. Г., Фрейнбергер, С.А., Хардвик, Л. Дж. И Тараскон, Дж. М. Li-O 2 и Li-S батареи с высоким накопителем энергии. Nat. Mater. 11 , 19–29 (2012).
Артикул ОБЪЯВЛЕНИЯ CAS Google ученый
Chung, S.-H. & Мантирам, А. Текущее состояние и перспективы развития металло-серных батарей. Adv. Mater. 31 , 1
5 (2019).
Артикул CAS Google ученый
Бхаргав А., Хе Дж., Гупта А. и Мантирам А. Литий-серные батареи: достижение критических показателей. Джоуль 4 , 285–291 (2020).
Артикул Google ученый
Перспективы для литий-ионных батарей и не только — видение 2030 года
Здесь стратегии можно условно разделить на следующие категории:
- (1)
Поиск новых электродных материалов LIB.
- (2)
«Сделанные на заказ» батареи для более широкого спектра применений.
- (3)
Отказ от традиционных жидких электролитов — например, ионных жидкостей, электролитов с высоким содержанием соли и твердотельных батарей (SSB).
- (4)
Включение окислительно-восстановительного химического состава анионов — Li-воздух, Li-сера и другие.
- (5)
Выходя за пределы Li: Na, Mg, Ca, Al.
- (6)
Разделение электрохимии и накопителя — проточные окислительно-восстановительные батареи.
Поиск новых материалов для электродов LIB представляет собой область со значительными трудностями.Хотя о новых материалах или морфологиях сообщается регулярно, чтобы быть коммерчески значимыми, они должны быть масштабируемыми. Объемная и гравиметрическая плотности энергии должны отражать плотности энергии электрода, а не только плотности самих материалов, то есть должны быть продемонстрированы скоростные характеристики электрода, который содержит достаточно активного материала, чтобы обеспечить требуемую плотность энергии для рассматриваемого применения. Сравнительно рано в рамках проекта «Материалы» была добыта вся база данных неорганических структур (ICSD) и материалы, предложенные с помощью алгоритмов интеллектуального анализа данных (включая простую замену элементов при сохранении фиксированного типа структуры) — на тот момент более 10 000 материалов.В то время как было получено значительное понимание того, какие конструктивные особенности управляют напряжением и т. Д., Было обнаружено только ограниченное количество новых классов материалов батарей. Например, были идентифицированы карбонофосфаты, которые представляют собой тип минеральной структуры, который ранее не синтезировался и не тестировался в аккумуляторных батареях 11 . Последующие действия по предсказанию структуры сгенерировали множество (мета) стабильных структур, но остается проблема идентифицировать структуры, которые устойчивы при циклическом движении, например, по отношению к потере кислорода, особенно в верхней части заряда, или, в более общем смысле, к структурным реорганизациям.Даже если структура предсказана, в настоящее время непросто предсказать, можно ли и как ее синтезировать 12 .
Область, которая в последнее время привлекла большое внимание, — окислительно-восстановительный потенциал связанного переходного металла и аниона. Хотя это установлено в химии на основе серы, где сульфид-ионы, S 2-, могут легко и обратимо окисляться до персульфидов, S 2 2-, и элементарной серы (в литий-серных батареях), существуют явные различия, когда анион является оксидным ионом.Более высокая окислительно-восстановительная пара O 2− / O − означает, что окислительно-восстановительный процесс аниона может происходить одновременно с окислительно-восстановительной химией катионов, обеспечивая более высокую производительность и сопряженные процессы. Проблемы связаны с часто сопутствующей нестабильностью к потере кислорода и структурными изменениями, сопровождающими удаление Li. Последнее может привести к гистерезису между зарядкой и разрядкой и «падению напряжения», наблюдаемому в так называемых материалах с избытком лития. Хотя это напрямую не связано, многие из этих химических веществ связаны с низкими показателями.Однако «лишние Li-материалы» содержат более высокое содержание Mn, чем типичные катодные материалы EV-типа, и поэтому потенциально могут быть как более дешевыми, так и более экологически чистыми, что еще больше мотивирует их исследования. В следующие 10 лет мы увидим более глубокое понимание того, как эти материалы функционируют и как уменьшить потерю кислорода. Возможно, появятся приложения, где они смогут оказать влияние?
Мы не затрагивали широкий спектр электродных материалов, исследуемых в течение многих лет, которые включают химические процессы замещения или преобразования, где литиирование (или натрирование) приводит к частичной или полной перестройке решеток.Здесь к проблемам относятся характеристики скорости, гистерезис напряжения и срок службы. Металлический литий продолжает привлекать значительное внимание в качестве анода, но образование дендритов лития остается проблемой, обеспечивая значительный стимул для продвижения всех твердотельных батарей (SSB) с твердотельными электролитами.
Ни один из перечисленных выше вариантов химии Li не является однозначным, за исключением, возможно, Na, где можно применить многие знания, полученные для LIB. Но даже здесь есть явные различия из-за большего размера Na, который способствует разным координационным средам и решеткам (например,g., графит не может вмещать Na), и более высокая растворимость солей Na в SEI, что означает, что требуются другие добавки к электролиту.
Один вопрос, над которым стоит задуматься, — это степень, в которой новые развивающиеся — или более мелкие «нишевые» рынки могут терпеть новые химические составы батарей, или всегда ли сокращение затрат, связанное с масштабом, будет способствовать использованию ограниченного набора химикатов батарей. Оксид лития-титана (LTO) в настоящее время имеет относительно скромный рынок приложений, включая быструю зарядку, где безопасность и способность работать в широком диапазоне температур являются проблемами: материал анода работает при 1.55 В по сравнению с Li, где ни покрытие Li, ни обычное формирование SEI не являются проблемой. В настоящее время разрабатываются альтернативы LTO, которые включают оксид ниобия и титана (NTO) от Toshiba и соединения оксида ниобия-вольфрама в нашей лаборатории, которые могут быть применены в батареях небольшого масштаба. Батареи с другим напряжением могут быть более подходящими для новых приложений микроэлектроники (например, при падении напряжения, необходимого для компьютерных микросхем), устраняя необходимость в преобразовании постоянного тока в постоянный и их легче соединять с электроникой сбора энергии.Небольшие первичные батареи в настоящее время используются для питания некоторых удаленных датчиков. Предполагается, что они потребуются в миллиардах или триллионах для обеспечения работы устройств Интернета вещей (IoT), что потребует значительной рабочей силы для их замены, часто из труднодоступных мест 13 . Можно ли производить новые аккумуляторные батареи по достаточно низкой цене для различных применений, которые часто делают на заказ? Медицинские батареи могут допускать более высокую наценку, что, возможно, позволяет разрабатывать батареи из других материалов, но здесь надежность и безопасность будут иметь первостепенное значение.
Авторы убеждены, что фундаментальная наука будет ключом к преодолению множества и разнообразных фундаментальных препятствий в пространстве «за пределами LIB». начальный синтез, их стабильность в неравновесных и суровых условиях — будь то температура или напряжение. Мы должны научиться управлять межфазными структурами — от SEI до интерфейсов между двумя компонентами в твердотельной батарее.Необходимы более совершенные структурные модели этих интерфейсов, чтобы улучшить нашу способность вычислять соответствующие процессы с реалистичными вычислительными ресурсами и улучшить наше понимание того, как они функционируют. Идеи самовосстановления систем возникли в области полимеров и были предложены в качестве потенциальных механизмов безопасного отключения, но, глядя в будущее, эти концепции должны быть воплощены в химии катодов и анодов. Мы должны продолжать разрабатывать новые методы, чтобы улучшить наше понимание множественных неравновесных процессов в батареях: с ростом требований к технологиям в сочетании с целями ZC, которые диктуют сокращение и более устойчивое использование энергии, потребность в фундаментальных и прикладных исследованиях становится более важной, чем когда-либо, поскольку впереди еще много фундаментальных научных проблем.
Зимние автомобильные проблемы — Новости в Санта-Роза, Калифорния, Котати, Калифорния, Петалума, Калифорния
Холодная зимняя погода может вызвать чрезмерную нагрузку на компоненты вашего автомобиля. Говорят, знание врага — это половина дела. Прежде чем составлять план зимнего технического обслуживания, узнайте, какие проблемы возникают с автомобилями зимой.
Чтобы помочь вам начать работу, мы составили список некоторых из наиболее распространенных проблем, связанных с автомобилем зимой.Взглянем.
Разряженная батарея
Свинцово-кислотные аккумуляторы зимой могут терять около 10 процентов заряда. Попросите вашего механика взглянуть на вашу батарею. Если он старше пяти лет, подумайте о его замене, чтобы предотвратить поломку.
Проверьте и при необходимости долейте жидкость в аккумуляторную батарею. Ваш механик должен регулярно проверять и обслуживать аккумулятор. Простая проверка может сэкономить вам много денег в будущем.
Обратите внимание на следующие общие признаки проблем с аккумулятором:
- Проблемы с запуском в ранние утренние часы
- Неисправные электрические аксессуары
- Коррозия на выводах аккумулятора
Густые жидкости
Зимой основные автомобильные жидкости, в том числе жидкость для гидроусилителя руля, трансмиссионная жидкость, тормозная жидкость, жидкость для стеклоочистителей и моторное масло, увеличивают плотность и вязкость.Густые жидкости не работают должным образом. Густое моторное масло может увеличить сопротивление жидкости. Это может привести к износу прокладок и внутреннего уплотнения.
Чтобы предотвратить эти проблемы, регулярно проверяйте основные жидкости и доливайте их. Перед началом движения дайте двигателю прогреться не менее 10 минут.
Низкое давление в шинах
Зимой давление воздуха падает на один фунт / кв. Дюйм на каждые 10 градусов падения температуры. Езда на недостаточно накачанных шинах может вызвать преждевременный износ. В худшем случае недостаточно накачанная шина может лопнуть во время движения.
Проверяйте давление в шинах каждую неделю. Купите портативный насос для накачивания автомобильных шин на 12 В. Если вы заметили признаки неравномерного износа протектора, подумайте о замене шин.
Изношенный ремень генератора
Генератор заряжает аккумулятор автомобиля, который, в свою очередь, питает фары и другую электронику автомобиля. Неисправный генератор может вызвать проблемы с электричеством или аккумулятором.
Зимой ремень генератора может затвердеть и даже потрескаться. Если вы слышите пронзительный визг каждый раз при запуске автомобиля, возможно, изношен ремень генератора.
Чтобы предотвратить дорогостоящий ремонт, осмотрите и при необходимости немедленно замените ремень генератора.
Свечи зажигания повреждены
Свечи зажигания воспламеняют топливовоздушную смесь внутри цилиндра сгорания. Низкие температуры могут привести к растрескиванию или коррозии свечей зажигания. Неисправная свеча зажигания повлияет на эффективность вашего автомобиля.
Ваша машина капризничает? Наша команда из шинного и автомобильного центров McLea может вам помочь. Мы команда опытных автомобильных экспертов.Нужна помощь в выборе подходящих автомобильных шин для Windsor ? Звоните 707-687-2062 .
Категории: | Количество просмотров: (37) | ВозвратНовый класс катодов без кобальта может повысить удельную энергию литий-ионных аккумуляторов следующего поколения — ScienceDaily
Исследователи из Национальной лаборатории Ок-Ридж разработали новое семейство катодов, способных заменить обычно дорогостоящие катоды на основе кобальта. найдены в современных литий-ионных батареях, которые используются в электромобилях и бытовой электронике.
Новый класс под названием NFA, который означает катод на основе никеля, железа и алюминия, является производным никелата лития и может использоваться для изготовления положительного электрода литий-ионной батареи. Эти новые катоды предназначены для быстрой зарядки, высокой энергоемкости, экономичности и долговечности.
В связи с ростом производства портативной электроники и электромобилей во всем мире литий-ионные батареи пользуются большим спросом. По словам Илиаса Белхаруака, ученого ORNL, возглавляющего исследования и разработки NFA, к 2030 году ожидается, что на дорогах будет находиться более 100 миллионов электромобилей.Кобальт — это металл, который в настоящее время необходим для катода, который составляет значительную часть стоимости литий-ионной батареи.
Кобальт редко встречается и в основном добывается за рубежом, что затрудняет приобретение и производство катодов. В результате поиск материала, альтернативного кобальту, который можно было бы производить с минимальными затратами, стал приоритетной задачей исследований литий-ионных батарей.
Ученые ORNL протестировали характеристики катодов класса NFA и определили, что они являются многообещающими заменителями катодов на основе кобальта, как описано в Advanced Materials и Journal of Power Sources .Исследователи использовали нейтронную дифракцию, мессбауэровскую спектроскопию и другие передовые методы определения характеристик для исследования атомной и микроструктуры NFA, а также электрохимических свойств.
«Наши исследования поведения NFA при зарядке и разрядке показали, что эти катоды подвергаются таким же электрохимическим реакциям, что и катоды на основе кобальта, и обеспечивают достаточно высокую удельную емкость для удовлетворения требований к плотности энергии батареи», — сказал Белхаруак.
Хотя исследования класса NFA находятся на начальной стадии, Белхаруак сказал, что предварительные результаты его команды на сегодняшний день показывают, что кобальт может не понадобиться для литий-ионных аккумуляторов следующего поколения.
«Мы разрабатываем катод с такими же или лучшими электрохимическими характеристиками, чем катоды на основе кобальта, при этом мы используем более дешевое сырье», — сказал он.
Белхаруак добавил, что не только NFA работает так же хорошо, как катоды на основе кобальта, но и процесс производства катодов NFA может быть интегрирован в существующие глобальные процессы производства катодов.
«Никелат лития уже давно рассматривается как предпочтительный материал для изготовления катодов, но он страдает внутренней структурной и электрохимической нестабильностью», — сказал он.«В наших исследованиях мы заменили часть никеля на железо и алюминий, чтобы повысить стабильность катода. Железо и алюминий являются экономичными, устойчивыми и экологически чистыми материалами».
Будущие исследования и разработки класса NFA будут включать тестирование материалов в ячейках большого формата для проверки результатов лабораторных исследований и дальнейшего изучения пригодности этих катодов для использования в электромобилях.
История Источник:
Материалы предоставлены DOE / Oak Ridge National Laboratory . Примечание. Содержимое можно редактировать по стилю и длине.
Свинцово-кислотные батареи| PVEducation
5 свинцово-кислотных батарей
Свинцово-кислотные батареи являются наиболее часто используемым типом батарей в фотоэлектрических системах. Хотя свинцово-кислотные батареи имеют низкую плотность энергии, умеренную эффективность и высокие требования к техническому обслуживанию, они также имеют долгий срок службы и низкие затраты по сравнению с другими типами батарей. Одним из исключительных преимуществ свинцово-кислотных аккумуляторов является то, что они являются наиболее часто используемой формой аккумуляторов для большинства аккумуляторных батарей (например, для запуска двигателей автомобилей) и, следовательно, имеют хорошо зарекомендовавшую себя зрелую технологическую базу.
Рисунок: Изменение напряжения в зависимости от степени заряда для нескольких различных типов батарей.
Свинцово-кислотная батарея состоит из отрицательного электрода из губчатого или пористого свинца. Свинец пористый, что облегчает образование и растворение свинца. Положительный электрод состоит из оксида свинца. Оба электрода погружены в электролитический раствор серной кислоты и воды. В случае, если электроды входят в контакт друг с другом в результате физического движения батареи или изменения толщины электродов, два электрода разделяет электрически изолирующая, но химически проницаемая мембрана.Эта мембрана также предотвращает короткое замыкание через электролит. Свинцово-кислотные батареи накапливают энергию за счет обратимой химической реакции, показанной ниже.
Общая химическая реакция:
PbO2 + Pb + 2h3SO4⇔заряженный разряд2PbSO4 + 2h3O
На минусовой клемме реакции заряда и разряда:
Pb + SO42-разряд разрядаPbSO4 + 2e-
На положительном выводе реакции заряда и разряда:
PbO2 + SO42- + 4H ++ 2e-заряженный разрядPbSO4 + 2h3O
Как показывают приведенные выше уравнения, разрядка аккумулятора вызывает образование кристаллов сульфата свинца как на отрицательной, так и на положительной клеммах, а также высвобождение электронов из-за изменения валентного заряда свинца.Для образования этого сульфата свинца используется сульфат сернокислотного электролита, окружающего аккумулятор. В результате электролит становится менее концентрированным. Полный разряд приведет к тому, что оба электрода будут покрыты сульфатом свинца и водой, а не серной кислотой, окружающей электроды. При полном разряде два электрода сделаны из одного материала, и между двумя электродами отсутствует химический потенциал или напряжение. Однако на практике разряд останавливается при напряжении отсечки, задолго до этого момента.Поэтому аккумулятор не должен разряжаться ниже этого напряжения.
Между полностью разряженным и заряженным состояниями свинцово-кислотный аккумулятор будет испытывать постепенное снижение напряжения. Уровень напряжения обычно используется для обозначения степени заряда аккумулятора. Зависимость аккумулятора от уровня заряда показана на рисунке ниже. Если аккумулятор оставить на низком уровне заряда в течение длительного периода времени, могут вырасти крупные кристаллы сульфата свинца, что навсегда снизит емкость аккумулятора.Эти более крупные кристаллы не похожи на типичную пористую структуру свинцового электрода, и их трудно превратить обратно в свинец.
В результате реакции зарядки сульфат свинца на отрицательном электроде превращается в свинец. На положительном конце реакция превращает свинец в оксид свинца. В качестве побочного продукта этой реакции выделяется водород. Во время первой части цикла зарядки преобладающей реакцией является превращение сульфата свинца в свинец и оксид свинца. Однако по мере того, как происходит зарядка, и большая часть сульфата свинца превращается либо в свинец, либо в диоксид свинца, зарядный ток электролизирует воду из электролита, и выделяются водород и газообразный кислород, процесс, известный как «выделение газа» из батареи.Если ток подается в батарею быстрее, чем может быть преобразован сульфат свинца, то выделение газа начинается до того, как весь сульфат свинца будет преобразован, то есть до того, как батарея будет полностью заряжена. Газообразование создает несколько проблем для свинцово-кислотной батареи. Газовыделение батареи не только вызывает проблемы безопасности из-за взрывоопасной природы производимого водорода, но также уменьшает количество воды в батарее, которую необходимо заменять вручную, вводя в систему компонент технического обслуживания.Кроме того, выделение газа может вызвать отделение активного материала от электролита, тем самым постоянно снижая емкость аккумулятора. По этим причинам аккумулятор не следует регулярно заряжать выше напряжения, которое вызывает газообразование. Напряжение газовыделения меняется в зависимости от скорости заряда.
Сульфат свинца является изолятором, и поэтому способ образования сульфата свинца на электродах определяет, насколько легко можно разрядить аккумулятор.
Для большинства систем возобновляемой энергии наиболее важными характеристиками батареи являются срок службы батареи, глубина разряда и требования к обслуживанию батареи.Этот набор параметров и их взаимосвязь с режимами зарядки, температурой и возрастом описаны ниже.
Глубина разряда в сочетании с емкостью батареи является фундаментальным параметром в конструкции блока батарей для фотоэлектрической системы, поскольку энергия, которая может быть извлечена из батареи, определяется путем умножения емкости батареи на глубину разряда. Батареи классифицируются как батареи глубокого или мелкого цикла. Глубина разряда батареи глубокого цикла может превышать 50%, а может достигать 80%.Чтобы достичь такой же полезной емкости, аккумуляторная батарея мелкого цикла должна иметь большую емкость, чем аккумуляторная батарея глубокого цикла.
Помимо глубины разряда и номинальной емкости аккумулятора, мгновенная или доступная емкость аккумулятора сильно зависит от скорости разряда аккумулятора и рабочей температуры аккумулятора. Емкость аккумулятора падает примерно на 1% на градус ниже примерно 20 ° C. Однако высокие температуры также не идеальны для аккумуляторов, поскольку они ускоряют старение, саморазряд и расход электролита.На приведенном ниже графике показано влияние температуры и скорости разряда аккумулятора на емкость аккумулятора.
Рисунок: Взаимосвязь между емкостью батареи, температурой и скоростью разряда.
Со временем емкость аккумулятора снижается из-за сульфатирования аккумулятора и выделения активного материала. Ухудшение емкости аккумулятора наиболее сильно зависит от взаимосвязи следующих параметров:
- режим зарядки / разрядки аккумулятора
- DOD батареи в течение срока ее службы
- его подверженность длительным периодам низкого разряда
- средняя температура батареи за весь срок службы
На следующем графике показано изменение функции батареи в зависимости от количества циклов и глубины разряда для свинцово-кислотной батареи с малым циклом.Свинцово-кислотная батарея глубокого разряда должна обеспечивать срок службы более 1000 циклов даже при глубине разряда более 50%.
Рисунок: Взаимосвязь между емкостью батареи, глубиной разряда и сроком службы для батареи с малым циклом разряда.
Помимо DOD, режим зарядки также играет важную роль в определении срока службы батареи. Перезаряд или недозаряд батареи приводит либо к потере активного материала, либо к сульфатированию батареи, что значительно сокращает срок службы батареи.
Рисунок: Влияние режима зарядки на емкость аккумулятора.
Окончательное влияние на зарядку аккумулятора связано с температурой аккумулятора. Хотя емкость свинцово-кислотной батареи снижается при работе при низких температурах, работа при высоких температурах увеличивает скорость старения батареи.
Рисунок: Взаимосвязь между емкостью батареи, температурой и сроком службы для батареи глубокого цикла.
Кривые разряда при постоянном токе для свинцово-кислотной батареи емкостью 550 Ач при различных скоростях разряда, с ограничивающим напряжением 1.85 В на ячейку (Mack, 1979). Более длительное время разряда увеличивает емкость аккумулятора.
Производство водорода и кислорода из батареи приводит к потере воды, поэтому в свинцово-кислотных батареях необходимо регулярно заменять воду. Другие компоненты аккумуляторной системы не требуют регулярного обслуживания, поэтому потеря воды может стать серьезной проблемой. Если система находится в удаленном месте, проверка потери воды может увеличить затраты. Аккумуляторы, не требующие обслуживания, ограничивают потребность в регулярном уходе, предотвращая или уменьшая количество газа, выходящего из аккумулятора.Однако из-за коррозионной природы электролита все батареи в некоторой степени вносят дополнительный компонент для технического обслуживания в фотоэлектрическую систему.
Свинцово-кислотные батареи обычно имеют кулоновский КПД 85% и КПД по энергии порядка 70%.
В зависимости от того, какая из вышеперечисленных проблем вызывает наибольшее беспокойство для конкретного приложения, соответствующие изменения базовой конфигурации батареи улучшают ее характеристики. В случае использования возобновляемых источников энергии указанные выше проблемы повлияют на глубину разряда, срок службы батареи и требования к техническому обслуживанию.Изменения в батарее обычно включают модификацию в одной из трех основных областей:
- изменения состава и геометрии электродов
- изменения в раствор электролита
- модификации корпуса или клемм батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.
Залитые свинцово-кислотные батареи характеризуются длительным циклом работы и длительным сроком службы. Однако залитые батареи требуют периодического обслуживания. Необходимо не только регулярно контролировать уровень воды в электролите, измеряя его удельный вес, но эти батареи также требуют «ускоренной зарядки».
Ускоренная зарядка
Ускоренная или выравнивающая зарядка включает кратковременную периодическую перезарядку, при которой выделяется газ и смешивается электролит, предотвращая расслоение электролита в батарее. Кроме того, ускоренная зарядка помогает поддерживать одинаковую емкость всех аккумуляторов. Например, если одна батарея развивает более высокое внутреннее последовательное сопротивление, чем другие батареи, тогда батарея с более низким SR будет постоянно недозаряжаться во время нормального режима зарядки из-за падения напряжения на последовательном сопротивлении.Однако, если батареи заряжаются более высоким напряжением, это позволяет полностью зарядить все батареи.
Удельный вес (SG)
Залитая батарея подвержена потере воды из электролита из-за выделения водорода и кислорода. Удельный вес электролита, который можно измерить с помощью ареометра, укажет на необходимость добавления воды в батареи, если батареи полностью заряжены. В качестве альтернативы ареометр точно покажет SOC батареи, если известно, что уровень воды правильный.SG периодически измеряется после ускоренной зарядки, чтобы гарантировать, что аккумулятор имеет достаточное количество воды в электролите. Удельный вес батареи должен быть предоставлен производителем.
Особые требования к гелевым герметичным свинцово-кислотным аккумуляторам
Свинцово-кислотные батареив гелеобразном состоянии или AGM (которые обычно герметичны или регулируются клапаном) имеют несколько потенциальных преимуществ:
- их можно использовать для глубокого цикла с сохранением срока службы батареи
- ускоренная зарядка не нужна
- они требуют меньшего обслуживания.
Однако эти батареи обычно требуют более точного режима зарядки и более низкого напряжения. Режим зарядки с более низким напряжением обусловлен использованием свинцово-кальциевых электродов для минимизации выделения газов, но требуется более точный режим зарядки, чтобы минимизировать выделение газов от батареи. Кроме того, эти батареи могут быть более чувствительными к колебаниям температуры, особенно если режим зарядки не компенсирует температуру или не предназначен для этих типов батарей.
Батарея для фотоэлектрической системы будет рассчитана на определенное количество циклов при определенном DOD, режиме зарядки и температуре.Однако батареи могут преждевременно терять емкость или внезапно выходить из строя по ряду причин. Внезапный выход из строя может быть вызван внутренним коротким замыканием батареи из-за отказа электрического разделителя внутри батареи. Короткое замыкание в батарее снизит напряжение и емкость всего блока батарей, особенно если секции батареи подключены параллельно, а также приведет к другим потенциальным проблемам, таким как перезарядка оставшихся батарей.Батарея также может выйти из строя из-за разрыва цепи (то есть может быть постепенное увеличение внутреннего последовательного сопротивления), и любые батареи, подключенные последовательно с этой батареей, также будут затронуты. Замораживание аккумулятора, в зависимости от типа используемого свинцово-кислотного аккумулятора, также может вызвать необратимый выход аккумулятора из строя.
Постепенное снижение пропускной способности может усугубляться неправильной работой, в частности, ухудшением DOD. Однако работа одной части аккумуляторного блока в условиях, отличных от другой, также приведет к снижению общей емкости и увеличению вероятности отказа батареи.Батареи могут непреднамеренно эксплуатироваться в разных режимах либо из-за колебаний температуры, либо из-за выхода из строя батареи в одной цепочке батарей, что приводит к неравномерной зарядке и разрядке в цепочке.
Установка
Батареи должны устанавливаться в соответствии с действующим стандартом страны, в которой они устанавливаются. В настоящее время существуют австралийские стандарты AS3011 и AS2676 для установки батарей. Существует также проект стандарта для аккумуляторов для приложений RAPS, который в конечном итоге станет австралийским стандартом.
Среди других факторов, которые следует учитывать при установке аккумуляторной системы, являются вентиляция, необходимая для конкретного типа аккумуляторной батареи, условия заземления, на которых должна быть размещена аккумуляторная батарея, и меры, принятые для обеспечения безопасности тех, кто может иметь доступ к аккумуляторной батарее. Кроме того, при установке блока батарей необходимо следить за тем, чтобы температура батареи находилась в пределах допустимых условий эксплуатации батареи и чтобы температура батарей в большем блоке батарей была такой же.Батареи в очень холодных условиях могут замерзнуть при низком уровне заряда, поэтому зимой вероятность того, что батарея будет разряжена, будет ниже. Чтобы предотвратить это, аккумуляторный блок можно закопать под землю. Аккумуляторы, регулярно подвергающиеся воздействию высоких рабочих температур, также могут иметь сокращенный срок службы.
Батареи потенциально опасны, и пользователи должны знать о трех основных опасностях: Серная кислота в электролите вызывает коррозию. При работе с батареями важна не только защита ног и глаз, но и защитная одежда.
Батареи могут генерировать большой ток. Если металлический предмет случайно попадает на клеммы батареи, через этот предмет могут протекать большие токи. При работе с батареями следует свести к минимуму присутствие ненужных металлических предметов (например, украшений), а инструменты должны иметь изолированные ручки.
Опасность взрыва из-за выделения газообразного водорода и кислорода. Во время зарядки, особенно при перезарядке, некоторые батареи, в том числе большинство батарей, используемых в фотоэлектрических системах, могут выделять потенциально взрывоопасную смесь водорода и кислорода.Чтобы снизить риск взрыва, используется вентиляция для предотвращения скопления этих газов, а потенциальные источники возгорания (т. Е. Цепи, которые могут генерировать искры или дуги) исключаются из корпуса аккумуляторной батареи.
Аккумуляторы вводят компонент периодического обслуживания в фотоэлектрическую систему. Для всех аккумуляторов, включая «необслуживаемые» аккумуляторы, требуется график технического обслуживания, который должен обеспечивать:
- клеммы аккумулятора не корродированы
- соединения аккумулятора затянуты
- , корпус аккумуляторной батареи не должен иметь трещин и коррозии.
Залитые батареи требуют дополнительного и более частого обслуживания. В случае залитых батарей уровень электролита и удельный вес электролита для каждой батареи необходимо регулярно проверять. Проверку удельного веса батареи с помощью ареометра следует проводить не менее чем через 15 минут после выравнивания или ускоренного заряда. В аккумуляторы следует добавлять только дистиллированную воду. Водопроводная вода содержит минералы, которые могут повредить электроды аккумулятора.
Свинец в свинцово-кислотных аккумуляторах представляет опасность для окружающей среды, если он не утилизируется надлежащим образом.Свинцово-кислотные батареи следует утилизировать, чтобы можно было восстановить свинец без ущерба для окружающей среды.
Материалы, из которых изготовлены электроды, оказывают большое влияние на химический состав батареи и, следовательно, влияют на напряжение батареи и ее характеристики зарядки и разрядки. Геометрия электрода определяет внутреннее последовательное сопротивление, а также скорость заряда и разряда.
Основными материалами анода и катода в свинцово-кислотной батарее являются свинец и диксоди свинца (PbO2).Свинцовый электрод выполнен в виде губчатого свинца. Губчатый свинец желателен, поскольку он очень пористый, и поэтому площадь поверхности между свинцом и электролитом серной кислоты очень велика. Добавление небольшого количества других элементов в свинцовый электрод для образования сплавов свинца может уменьшить некоторые недостатки, связанные со свинцом. Основными типами используемых электродов являются свинец / сурьма (с использованием нескольких процентов сурьмы), сплавы свинец / кальций и сплавы свинец / сурьма / кальций.
Аккумуляторы из свинцового сплава с сурьмой имеют ряд преимуществ перед электродами из чистого свинца.Эти преимущества включают: более низкую стоимость свинца / сурьмы; повышенная прочность свинцово-сурьмянистого электрода; и возможность получить глубокую разрядку на короткий период времени. Однако сплавы свинец / сурьма склонны к сульфатированию, и их не следует оставлять при низком уровне заряда в течение длительных периодов времени. Кроме того, сплавы свинец / сурьма увеличивают выделение газов из аккумулятора во время зарядки, что приводит к значительным потерям воды. Поскольку в эти батареи необходимо добавлять воду, они требуют более серьезного обслуживания.Кроме того, свинцово-сурьмяные батареи отличаются высокой скоростью разряда и коротким сроком службы. Эти проблемы (xx — проверьте, вызваны ли обе проблемы гальваническим покрытием)) вызваны растворением сурьмы с одного электрода и ее осаждением или осаждением на другом электроде. (xx повышенная адгезия PbO2 xx)
Свинцово-кальциевые батареи — это технология со средней стоимостью. Как и сурьма, кальций также увеличивает прочность свинца отрицательного электрода, но, в отличие от сурьмы, добавление кальция снижает выделение газа в батарее, а также снижает скорость саморазряда.Однако свинцово-кальциевые батареи не следует сильно разряжать. Следовательно, эти типы батарей могут считаться «необслуживаемыми», но это только батареи с малым циклом заряда.
Добавление сурьмы, а также кальция в электроды дает некоторые преимущества как сурьмы, так и свинца, но при более высокой стоимости. Такие аккумуляторы глубокого разряда также могут иметь длительный срок службы. Кроме того, к электродам могут быть добавлены следовые количества других материалов для повышения производительности батареи.
В дополнение к материалу, из которого изготовлены электродные пластины, физическая конфигурация электродов также влияет на скорость зарядки и разрядки, а также на срок службы. Тонкие пластины обеспечивают более быструю зарядку и разрядку, но они менее прочные и более склонны к отслаиванию материала с пластин. Поскольку высокие зарядные или разрядные токи обычно не являются обязательной характеристикой аккумуляторов для систем возобновляемой энергии, можно использовать более толстые пластины, которые имеют меньшее время зарядки и разрядки, но также имеют более длительный срок службы.
В открытой залитой батарее любой образующийся газ может улетучиваться в атмосферу, вызывая проблемы как безопасности, так и обслуживания. Герметичный свинцово-кислотный (SLA), свинцово-кислотный аккумулятор с клапаном (VRLA) или рекомбинированный свинцово-кислотный аккумулятор предотвращает потерю воды из электролита, предотвращая или сводя к минимуму утечку газообразного водорода из аккумулятора. В герметичной свинцово-кислотной батарее (SLA) водород не улетучивается в атмосферу, а скорее перемещается или мигрирует к другому электроду, где он рекомбинирует (возможно, с помощью процесса каталитического преобразования) с образованием воды.Эти батареи не являются полностью герметичными, а имеют вентиляционное отверстие, предотвращающее создание избыточного давления в батарее. Герметичные батареи требуют строгого контроля заряда, чтобы предотвратить накопление водорода быстрее, чем он может рекомбинировать, но они требуют меньше обслуживания, чем открытые батареи.
Свинцово-кислотные батареи с клапанным регулированием (VRLA) по концепции аналогичны герметичным свинцово-кислотным (SLA) аккумуляторным батареям, за исключением того, что клапаны должны выделять водород почти полностью.Аккумуляторы SLA или VRLA обычно имеют дополнительные конструктивные особенности, такие как использование гелеобразных электролитов и использование свинцово-кальциевых пластин, чтобы свести к минимуму выделение газообразного водорода.
Несмотря на разнообразие типов аккумуляторных батарей и областей применения, особенно важными характеристиками фотоэлектрических систем являются требования к обслуживанию аккумуляторной батареи и способность глубоко заряжать аккумулятор при сохранении длительного срока службы. Для обеспечения длительного срока службы при глубокой разрядке батареи глубокого разряда могут быть либо открытого типа, с избытком электролитического раствора и толстыми пластинами, либо иммобилизованного электролитического типа.Герметичные гелевые батареи могут быть классифицированы как батареи глубокого разряда, но они обычно выдерживают меньшее количество циклов и меньшие разряды, чем специально разработанные батареи с заливной пластиной или батареи AGM. В аккумуляторах с мелким циклом обычно используются более тонкие пластины, сделанные из свинцово-кальциевых сплавов, и обычно глубина разряда не превышает 25%.
Батареи для фотоэлектрических или удаленных источников питания (RAPS)
Строгие требования к батареям, используемым в фотоэлектрических системах, побудили нескольких производителей изготавливать батареи, специально предназначенные для фотоэлектрических или других удаленных систем питания.В автономных фотоэлектрических системах чаще всего используются батареи свинцово-кислотного типа с глубоким циклом или необслуживаемые батареи с меньшим циклом. Батареи глубокого цикла могут быть батареями с открытым затоплением (которые не требуют обслуживания) или батареями AGM с невыпадающим электролитом, которые не требуют обслуживания (но которые требуют осторожности при выборе регулятора). Специальные необслуживаемые батареи с малым циклом работы, которые выдерживают нечастую разрядку, также могут использоваться в фотоэлектрических приложениях, и при условии, что аккумуляторная батарея спроектирована надлежащим образом, никогда не требуется DOD более 25%.Батарея с длительным сроком службы в правильно спроектированной фотоэлектрической системе при правильном обслуживании может прослужить до 15 лет, но использование батарей, которые не рассчитаны на длительный срок службы, или условий в фотоэлектрической системе, или являются частью плохой конструкции системы может привести к выходу из строя аккумуляторного блока всего через несколько лет.
Доступны несколько других типов батарей специального назначения, они описаны ниже.
Пусковые, осветительные батареи зажигания (SLI). Эти аккумуляторы используются в автомобилях и отличаются высокой скоростью разряда и заряда.Чаще всего используются электродные пластины, упрочненные либо свинцово-сурьмяной в залитой конфигурации, либо свинцово-кальциевой в герметичной конфигурации. Эти батареи имеют хороший срок службы в условиях малого цикла, но имеют очень низкий срок службы в условиях глубокого цикла. Батареи SLI не должны использоваться в фотоэлектрической системе, поскольку их характеристики не оптимизированы для использования в системе возобновляемых источников энергии, поскольку срок службы фотоэлектрической системы очень мал.
Тяговые или тяговые батареи. Тяговые или двигательные батареи используются для обеспечения электроэнергией небольших транспортных средств, таких как гольф-кары.По сравнению с батареями SLI, они обладают большей способностью выдерживать глубокий цикл при сохранении длительного срока службы. Хотя эта особенность делает их более подходящими для фотоэлектрической системы, чем та, в которой используются батареи SLI, двигательные батареи не должны использоваться в каких-либо фотоэлектрических системах, поскольку их скорость саморазряда очень высока из-за использования свинцово-сурьмяных электродов. Высокая скорость саморазряда фактически приведет к большим потерям мощности в батарее и сделает общую фотоэлектрическую систему неэффективной, если батареи не будут испытывать большой DOD на ежедневной основе.Способность этих аккумуляторов выдерживать глубокую цикличность также намного ниже, чем у настоящих аккумуляторов глубокого цикла. Следовательно, эти батареи не подходят для фотоэлектрических систем.
Жилые или морские батареи. Эти батареи обычно представляют собой компромисс между батареями SLI, тяговыми батареями и настоящими батареями глубокого цикла. Хотя они и не рекомендуются, в некоторых небольших фотоэлектрических системах используются двигательные и морские батареи. Срок службы таких батарей будет ограничен в лучшем случае несколькими годами, так что экономия на замене батарей означает, что такие батареи, как правило, не являются долгосрочным рентабельным вариантом.
Стационарные аккумуляторы. Стационарные батареи часто используются для аварийного питания или источников бесперебойного питания. Это батареи мелкого цикла, предназначенные для того, чтобы оставаться почти полностью заряженными в течение большей части своего срока службы с лишь редкими глубокими разрядами. Их можно использовать в фотоэлектрических системах, если размер аккумуляторной батареи никогда не опускается ниже DOD от 10% до 25%.
Батареи глубокого разряда. Батареи глубокого разряда должны обеспечивать срок службы в несколько тысяч циклов при высокой глубине разряда (80% или более).Значительные различия в характеристиках цикла могут наблюдаться с двумя типами батарей глубокого разряда, поэтому следует сравнивать срок службы и степень разряда различных батарей глубокого разряда.
Свинцово-кислотный аккумулятор состоит из электродов из оксида свинца и свинца, погруженных в раствор слабой серной кислоты. Возможные проблемы со свинцово-кислотными аккумуляторами:
Газообразование: выделение водорода и кислорода. Загазованность батареи приводит к проблемам с безопасностью и потере воды из электролита.Потеря воды увеличивает требования к обслуживанию батареи, поскольку воду необходимо периодически проверять и заменять.
Повреждение электродов. Вывод отрицательного электрода мягкий и его легко повредить, особенно в тех случаях, когда аккумулятор может постоянно или сильно двигаться.
Расслоение электролита. Серная кислота — тяжелая вязкая жидкость. По мере разряда батареи концентрация серной кислоты в электролите уменьшается, а во время зарядки концентрат серной кислоты увеличивается.Такое циклическое изменение концентрации серной кислоты может привести к расслоению электролита, при котором более тяжелая серная кислота остается на дне батареи, а менее концентрированный раствор, вода, остается наверху. Непосредственная близость электродных пластин внутри батареи означает, что при физическом встряхивании серная кислота и вода не смешиваются. Однако контролируемое выделение газа электролита способствует смешиванию воды и серной кислоты, но его необходимо тщательно контролировать, чтобы избежать проблем безопасности и потери воды.В большинстве свинцово-кислотных аккумуляторов требуется периодическая, но нечастая подача газа в аккумулятор для предотвращения или обращения вспять расслоения электролита в процессе, называемом «ускоренной» зарядкой.
Сульфатирование аккумулятора. При низком заряде на свинцовом электроде могут расти крупные кристаллы сульфата свинца, в отличие от мелкозернистого материала, который обычно образуется на электродах. Сульфат свинца — изоляционный материал.
Разлив серной кислоты. Если серная кислота вытечет из корпуса аккумулятора, это представляет серьезную угрозу безопасности.Гелеобразование или иммобилизация жидкой серной кислоты снижает возможность разливов серной кислоты.
Зависание АКБ при низком уровне разряда. Если батарея находится на низком уровне разряда после превращения всего электролита в воду, точка замерзания электролита также падает.
Потеря активного материала электродов. Потеря активного материала электродов может происходить в результате нескольких процессов. Одним из процессов, который может вызвать необратимую потерю емкости, является отслаивание активного материала из-за изменения объема между xxx и сульфатом свинца.Кроме того, xxx. Неправильные условия зарядки и выделение газа могут вызвать отслоение активного материала от электродов, что приведет к необратимой потере емкости.
В зависимости от того, какая из вышеперечисленных проблем вызывает наибольшее беспокойство для конкретного приложения, соответствующие изменения базовой конфигурации батареи улучшают ее характеристики. В случае использования возобновляемых источников энергии указанные выше проблемы повлияют на глубину разряда, срок службы батареи и требования к техническому обслуживанию.Изменения в батарее обычно включают модификацию в одной из трех основных областей:
- изменения состава и геометрии электродов
- изменения в раствор электролита
- модификации корпуса или клемм батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.
Коррозия состоит из областей набора или восстановления / окисления, в которых обе реакции происходят на одном и том же электроде. Для аккумуляторной системы коррозия приводит к нескольким пагубным последствиям.Один из эффектов заключается в том, что он превращает металлический электрод в оксид металла.
Все химические реакции протекают как в прямом, так и в обратном направлении. Для того чтобы обратная реакция протекала, реагенты должны набирать достаточно энергии, чтобы преодолеть электрохимическую разницу между реагентами и продуктами, а также перенапряжение. Обычно в аккумуляторных системах вероятность возникновения обратной реакции мала, так как существует несколько молекул с достаточно большой энергией. Однако некоторые частицы, хотя и маленькие, обладают достаточной энергией.В заряженной батарее существует процесс, с помощью которого батарея может быть разряжена даже при отсутствии нагрузки, подключенной к батарее. Количество разряжаемого аккумулятора при стоянии называется саморазрядом. Саморазряд увеличивается с повышением температуры, потому что у большей части продуктов будет достаточно энергии для протекания реакции в обратном направлении.
Идеальным набором химических реакций для батареи является тот, в котором существует большой химический потенциал, который высвобождает большое количество электронов, имеет низкое перенапряжение, самопроизвольно протекает только в одном направлении и является единственной химической реакцией, которая может произойти.Однако на практике есть несколько эффектов, которые ухудшают характеристики батареи из-за нежелательных химических реакций, таких как изменение фазы объема реагентов или продуктов, а также физическое движение реагентов и продуктов внутри батареи.
Во время химических реакций многие материалы претерпевают изменение либо в фазе, либо, если они остаются в одной и той же фазе, объем и плотность материала могут быть изменены в результате химической реакции. Наконец, материалы, используемые в батарее, в первую очередь анод и катод, могут изменить свою кристалличность или структуру поверхности, что, в свою очередь, повлияет на реакции в батарее.Многие компоненты в окислительно-восстановительных реакциях претерпевают изменение фазы во время окисления или восстановления. Например, в свинцово-кислотной батарее сульфат-ионы меняются с твердой формы (в виде сульфата свинца) на раствор (в виде серной кислоты). Если сульфат свинца перекристаллизовывается где-нибудь, кроме анода или катода, то этот материал теряется для аккумуляторной системы. Во время зарядки только материалы, соединенные с анодом и катодом, могут участвовать в электронном обмене, и поэтому, если материал не касается анода или катода, он больше не может заряжаться.Образование газовой фазы в батарее также представляет особые проблемы. Во-первых, газовая фаза обычно имеет больший объем, чем исходные реагенты, что вызывает изменение давления в батарее. Во-вторых, если предполагаемые продукты находятся в газовом переходе, они должны быть ограничены анодом и катодом, иначе они не смогут заряжаться.
Изменение громкости также обычно отрицательно сказывается на работе от батареи.
В стандартной свинцово-кислотной аккумуляторной батарее электроды погружены в жидкую серную кислоту.Несколько модификаций электролита используются для улучшения характеристик батареи в одной из нескольких областей. Ключевыми параметрами электролита, которые контролируют производительность батареи, являются объем и концентрация электролита, а также образование «пленочного» электролита.
Изменения объема электролита можно использовать для повышения надежности батареи. Увеличение объема электролита делает аккумулятор менее чувствительным к потерям воды и, следовательно, делает регулярное обслуживание менее критичным.Увеличение объема батареи также увеличит ее вес и снизит удельную энергию батареи.
В аккумуляторных батареях с «плененным» электролитом серная кислота иммобилизуется либо путем «гелеобразования» серной кислоты, либо с помощью «абсорбирующего стеклянного мата». Оба имеют меньшее выделение газа по сравнению с затопленными свинцово-кислотными аккумуляторами и, следовательно, часто встречаются в герметичных свинцово-кислотных аккумуляторах, не требующих обслуживания.
Геллинг. В «гелеобразной» свинцово-кислотной батарее электролит может быть иммобилизован путем гелеобразования серной кислоты с использованием силикагеля.Гелеобразный электролит имеет преимущество в том, что снижается выделение газа, и, следовательно, батареи не требуют особого обслуживания. Кроме того, расслоение электролита не происходит в гелевых батареях, и поэтому ускоренная зарядка не требуется, а поскольку электролит загустевает, вероятность просыпания серной кислоты также снижается. Однако для того, чтобы еще больше снизить газообразование, в этих «гелевых» батареях также обычно используются свинцово-кальциевые пластины, что делает их непригодными для применения в условиях глубокого разряда.Еще один недостаток заключается в том, что условия зарядки гелеобразной свинцово-кислотной батареи необходимо более тщательно контролировать, чтобы предотвратить перезаряд и повреждение батареи.
Абсорбирующее матирование стекла. Вторая технология, которая может быть использована для иммобилизации серной кислоты, — это «абсорбирующий стеклянный мат» или аккумуляторы AGM.